Оценка современной динамики пожаров в аридных экосистемах по материалам космической съемки (на примере Черных Земель)

Материал из GIS-Lab
Перейти к навигации Перейти к поиску

Реферат. Процессы горения растительности – важный компонент динамики травянистых аридных экосистем. Понимание влияния пожаров на различные компоненты аридных экосистем необходимо для научных, природоохранных и управленческих задач и требует подробной оценки процессов горения с высоким пространственным и временным разрешением. Это исследование представляет метод и описание данных, которые можно использовать для проведения подобной оценки динамики пожаров. Описана пространственно-временная динамика пожаров района Черных земель. Показана сильная распространенность пожаров, их сильную межгодовую изменчивость, кластеризацию в пространстве и доминирование больших пожаров. Ключевые слова: аридные экосистемы, пожары, дистанционное зондирование, Черные земли.

Динамика пожаров является неотъемлемой составляющей функционирования аридных экосистем. Меньшая, по сравнению со степными и лесными экосистемами сомкнутость и биомасса растительного покрова ведет к относительно меньшей интенсивности пожаров, количество парниковых газов, выделяемых при горении сравнительно невелико (Van der Werf et al., 2006). Однако пожары оказывают значительное влияние на растительность и фауну аридных экосистем, в частности, на состав и численность населения грызунов (Шилова и др., 2007), распространение чужеродных видов (Brooks et al., 2004). Активные процессы горения травянистых экосистем и сопутствующее задымление могут стать причиной изменения путей миграции птиц (например, гусеобразных, Северный Казахстан (Koshkina, 2009), на несколько порядков повышать содержание диоксида и монооксида углерода в воздухе и за счет атмосферных переносов влиять на прозрачность атмосферы – вплоть до Шпицбергена (Stohl et al., 2007; Warneke et al., 2009).

Частота и широта распространения пожаров обуславливаются наличием и доступностью горючего материала и источников возгорания. Засушливые экосистемы, как правило, менее фрагментированы, чем степные и лесные, за счет относительно слабого развития хозяйственной инфраструктуры и менее значительных площадей сельскохозяйственных угодий. Меньшее количество искусственных и естественных преград (например, дорог, водотоков) способствует значительным по площади пожарам. Другим важным фактором, способствующим распространению обширных пожаров, является запас и сомкнутость травостоя (Иванов, 1952; Родин, 1981). Сокращение пастбищной нагрузки вызывает постепенное увеличение сомкнутости травостоев и биомассы, которая, в свою очередь, является основным ресурсом горения. Таким образом, увеличение сухой биомассы в связи со сниженной пастбищной нагрузкой может приводить к росту сгоревших площадей. В то же время роль климата в объяснении динамики пожаров динамики в сезонно-засушливых экосистемах, как правило, вторична (Meyn et al., 2007). Увеличение площадей пожаров после смен землепользования не одномоментно. Восстановление экосистемы до уровня, когда могут возникать и повторяться масштабные пожары, может занять 5 и более лет, и требует особого сочетания растительности, особенностей климата и динамики природопользования (Dubinin et al., 2010; Зонн, 1995).

Комплексные исследования растительности в сухих степях и полупустынях невозможны без понимания пространственно-временной динамики пожаров (Опарин, Опарина, 2003). Системное изучение влияния пожаров на компоненты экосистем требует данных о распространении пожаров с высоким пространственным и временным разрешением. При отсутствии подробных оценок горимости достаточно сложно говорить насколько типичны связанные с горением процессы, такие как смены растительности пирогенного характера. Исследования влияния пожаров на растительность предоставляют важную экспериментальную информацию, но из-за их трудоемкости часто ограничиваются одним или несколькими участками (Малышева, Малаховский, 2000) и в связи с этим, не позволяют произвести адекватной статистической оценки и склонны к неоправданной генерализации (Козлов, 2003).

Растительность Северо-Западного Прикаспия, в частности, Черных земель – района, где мы проводили свои исследования, в последние двадцать лет претерпевает существенные изменения, в основном, выражающиеся в увеличении доли злаков и сокращении площадей, занятых полынниками (Маштыков, Очирова, 2005; Шилова и др., 2007). Активные процессы горения, так же имеющее место на данной территории, могут свидетельствовать о существовании положительной обратной связи между ними и изменением растительности. Виды, неустойчивые к пожарам, уступают место видам, более к ним устойчивым. Помимо этого изменения растительности также зависят от частоты пожаров, охватывающих одну и ту же территорию (Опарин, Опарина, 2003).

Несмотря на важную экосистемную роль процессов горения, происходящих на территории Черных земель, подробных численных оценок их пространственных и временных характеристик до сих произведено не было. Научная оценка динамики пожаров этого района ограничивается единственной работой (Буваев, 2002), имеющей ряд серьезных недостатков, в том числе, ограниченный временной интервал (только за 2002 г.), за который была произведена оценка. Столь узкое временное разрешение работы не позволяет делать выводы о долгосрочных изменениях динамики пожаров. Также в статье не приводится методология, в соответствии с которой производилось картирование пожаров, а результаты анализа (ГИС-слои) отсутствуют в открытом доступе. Тем не менее, методология, представленная в работе Д.А. Буваева (2002), отражает широко используемые подходы к оценке пожарной динамики экосистем по всему миру (Arino et al., 2001), которые могут быть применены для создания адекватных наборов данных о пожарной динамике аридных экосистем.

Современные средства дистанционного зондирования земной поверхности позволяют достаточно быстро и эффективно получать и обрабатывать данные дистанционного зондирования для восстановления временной и пространственной пожарной динамики практически любой территории земного шара. Средства дистанционного мониторинга пожаров разделяются на две группы: мониторинг активно горящих участков (оперативный) и мониторинг уже сгоревших территорий. Каждая из этих групп характеризуется своими особенностями выделения участков, охваченных пожарами, имеет свои достоинства и недостатки, использует различные базовые данные. Для идентификации пожарных явлений могут использоваться автоматические, полуавтоматические методы, а также визуальное или ручное дешифрирование, применение которого позволяет получить качественный результат (Bowman et al., 2002).

В данной работе мы рассматриваем временной и пространственный режимы горения региона Черных Земель на территории Республики Калмыкия и Астраханской области. Задачи данной работы: 1) восстановить динамику пожаров региона Черных Земель с 2000 по 2009 гг., 2) оценить общую и межгодовую изменчивость появления пожаров, 3) оценить пространственное распределение частоты горения (интервал возврата пожара). Особо отметим, что целью данной работы не является выявление движущих факторов оцениваемой динамики пожаров, однако, мы планируем остановиться на этом вопросе в следующих публикациях.

Методы исследования

Территория исследования расположена в Северо-Западном Прикаспии на правобережье р. Волга и охватывает регион Черных земель (три административных района Республики Калмыкия: Черноземельский, Яшкульский, Юстинский, а также степные участки Енотаевского и Наримановского районов Астраханской области). Общая площадь территории исследования составляет 4.5 млн га. и полностью включает степной участок Государственного природного биосферного заповедника (ГПБЗ) «Черные земли» и его буферную зону, а также пограничный с заповедником заказник «Степной» / «Тингута». Район исследования представляет собой суббореальную пустыню на песках морского происхождения, где доминирующими растительными группировками являются лерхополынные, тырсовые, осочково-тырсовые сообщества. Выбранный район работ в целом соответствует контуру растительного региона «Пустыни равнинные северные», согласно карте Растительности СССР (1990) с масштабом 1: 4000000.

Период исследования. Оценка пожарной динамики была произведена за 2000-2008 гг. Выбор периода исследования обоснован доступностью за этот период данных дистанционного зондирования. Картирование сгоревших территорий производилось ежегодно с начала мая до конца сентября, охватывающий период сезонного минимума осадков (летняя засуха), когда в районе работ отмечается основное количество пожаров (Carmona-Moreno et al., 2005).

Данные. Для восстановления пожарной динамики территории исследования нами были использованы архивные данные дистанционного зондирования, полученные с помощью камеры MODIS ИСЗ TERRA, а также три продукта на базе данных MODIS: продукты первого уровня обработки, получаемые в автоматическом режиме на базе исходного потока данных MOD2QM и MOD1KM – данные отражения 250 и 1000 метрового разрешения, соответственно, а также производный продукт второго уровня обработки MOD14A1 – данные о локализации очагов активного горения. Данные MOD2QM представлены двумя спектральными диапазонами: 620-670 нанометров (красный), 841-876 (ближний инфракрасный). Данные MOD1KM содержат информацию в 28 спектральных диапазонах. Все данные MODIS доступны на бесплатной основе через интернет. Источником данных первого уровня обработки является Система Архивирования и Распространения Данных Первого Уровня Обработки и Атмосферных Данных (Level 1 and Atmosphere Archive and Distribution System – LAADS, http://gis-lab.info/qa/laadsweb.html), второго уровня обработки - Поисковая Система Инвентаризации (Warehouse Inventory Search Tool – WIST, http://gis-lab.info/qa/wist.html). Данные обоих уровней обработки доступны практически ежедневно, за исключением дней с сильной облачностью. Для каждого года в течение периода исследования было получено в среднем 75 изображений (от 50 до 103 изображений).

Использование свободно доступных данных обуславливает достаточно легкое продолжение временной серии динамики пожаров района исследования в последующие годы, а при необходимости также и расширение района исследования.

Проверка данных картирования осуществлялась с помощью данных об очагах горения, полученных с помощью радиометра MODIS, базирующегося на спутниках TERRA и AQUA – MOD14A1/MYD14A1. Этот продукт представляет площади высокотемпературных аномалий («очагов» горения), к которым чувствительны 3960 и 11000 нанометровые спектральные диапазоны съемки (21, 22, 31 каналы) радиометра MODIS (Justice et al., 2002). Несмотря на то, что эти данные не дают четкого представления о площади сгоревших территорий, они могут использоваться для проверки последних. Данные MOD14A1 позволяют идентифицировать очаги пожаров с достаточной высокой (до 80%) степенью достоверности (Hawbaker et al., 2008). Опосредованная проверка результатов также производилась с помощью официальных данных по пожарам, полученных из Министерства по чрезвычайным ситуациям Республики Калмыкия, Официальные данные не позволяют произвести точную проверку полученной со спутников информации по причине того, что не все пожары были учтены, однако они дают возможность оценить тенденции.

Подготовка данных. Для последующего дешифрирования были отобраны безоблачные снимки. На основе продуктов MODIS и MOD1KM были созданы композитные трехканальные изображения RGB. В качестве синего и зеленого канала были использованы 250-метровые красный и ближний инфракрасный каналы MOD2QKM, а для красного канала был выбран один из тепловых каналов MODIS из продукта MOD1KM (31 канал, 10780- 11280 нм). Использование теплового канала позволило произвести более точное разделение водных объектов, теней от облаков и сгоревших территорий.

Для проверки из MOD14A1/MYD14A1 были извлечены данные о дате и величине активного очага пожара. Все данные были географически привязаны в равновеликую проекцию Альберса с помощью программных пакетов MODIS Reprojection Tool Swath и MODIS Reprojection Tool (https://lpdaac.usgs.gov/lpdaac/tools/modis_reprojection_tool).

Дешифрирование. Восстановление границ сгоревших территорий производилось по временным сериям данных MODIS. Высокое временное разрешение (практически ежедневная съемка), позволило с высокой степенью точности идентифицировать сгоревшую территорию по следующим признакам: а) наличие послепожарной сажи, поглощающей солнечную радиацию во всех диапазонах и выражающейся визуально, как темные пятна, б) наличие поверхности без растительности там, где она присутствовала несколько дней назад, в) четкое ограничение области пожара объектами линейной инфраструктуры, часто останавливающими распространение огня (рис. 1). В ряде случаев сгоревшие территории не могут быть идентифицированы только по наличию послепожарной сажи, т.к. она может быть удалена за счет выветривания или вымывания.

Несмотря на хорошее спектральное и временное разрешение данных MODIS, дешифрирование пожаров в этом и других районах может быть связано с некоторыми сложностями. Главными препятствиями являются сильная облачность, сложность выделения пожаров слабой интенсивности, не приводящих к удалению растительности на значительной площади.

Результаты дешифрирования были проверены с помощью полигонального слоя активных пожаров. Для определения точности использовались центроиды полигонов с высоким уровнем достоверности температурных аномалий. Было рассчитано процентное отношение попадания очагов горения в контур сгоревшей территории. Данный способ проверки дает представление об ошибке из-за пропущенных пожаров (ошибка недооценки), но не дает возможности оценить возможную переоценку.

Анализ. Полученные границы сгоревших территорий использовались для расчета площадей и временного распределения пожаров по годам и за весь период. Площади территорий рассчитывались в равноплощадной проекции Альберса (стандартный меридиан 45, первая стандартная параллель 52, вторая стандартная параллель 64). Для определения распределения территорий по площади и числу пожаров, сгоревшие территории были разбиты на восемь размерных классов от территорий меньше 10, до территорий больше 250 тыс. га. Для определения периодичности горения территории за период исследования все полигоны были разбиты по границам на уникальные (непересекающиеся) и произведена выборка по их центроидам уникальных полигонов из исходных границ сгоревших территорий в Arcinfo Workstation/Arcview GIS для получения информации о том, сколько раз горел конкретный контур за период исследования.

Рис. 1. Пример сгоревших территорий в период с 16 июля по 5 августа 2005 г.: а) изображение камеры MODIS до (6 июня 2005 г.) и б) – после пожара (7 августа 2005 г.). Участок Яшкульского и Юстинского районов Республики Калмыкия. Fig. 1. Example of burned area burned during July, 16th – August, 5th period: а) – before (June 6th, 2005), б) – after fire (August 7th, 2005) MODIS image. Showing portion of Yashkulsky and Ustinsky region of Republic of Kalmykia.

1 a.jpg a) 1 b.jpg б)

Мы также сравнили общую тенденцию изменения расчетных площадей с официальными данными МЧС России.

Результаты

В период с 2000 по 2008 гг. в районе исследования в общей сложности сгорело 2790 тыс. га; с учетом повторяемости пожаров общая сгоревшая площадь составила 1288 тыс. га или 27% территории исследования. Максимальное выгорание достигало 16% территории (547 тыс. га, 2006 г.), в среднем – 310 тыс. га ежегодно (6.9% территории). В пяти из девяти лет сгоревшая площадь составила более чем 5% территории исследования, в трех из десяти лет – более 10% (табл. 1). Значительные по величине пожары происходили практически каждый год, за исключением 2003 г., когда сгорела относительно небольшая площадь (59 тыс. га или 1.3% территории, рис. 2). Наибольшие площади сгоревших территорий отмечались в Черноземельском районе, затем в Яшкульском и Юстинском районах Республики Калмыкия и их доля составила 54, 27, 11%, соответственно, от общей сгоревшей территории (табл. 2). Официальные данные, хотя и показали совпадающую тенденцию роста количества пожаров, коррелировали с оценкой слабо (ρ=54%, табл. 1).

Таблица 1. Площадь территории, ежегодно охваченной пожарами в период 2000-2008 гг. (тыс. га). Table 1. Total annual area burned from 2000 to 2008 (thousands ha).

Tab 1.jpg

Таблица 2. Площадь территории, охваченной пожарами, суммарно по районам и годам (тыс. га), процент от площади района (в скобках). Table 2. Area burned summarized by regions and years (thousands ha), and percentage of total region area (in brackets).

Tab 2.jpg

Распределение частоты горения характеризовалось высокой степенью кластеризации (рис. 3). Анализ пространственного распределения позволяет выделить 3 очага кластеризации. Основным очагом является, безусловно, территория ГПБЗ «Черные земли», а так же территория непосредственно к западу от его границы (окрестности п. Тавн-Гашун, горевшая 7 из 9 лет периода исследования. Вторым очагом горения является область на границе Яшкульского и Юстинского районов (окрестности пос. Молодежный). Третья область – север Енотаевского района Астраханской области и Юстинского района Республики Калмыкия. Второй и третий очаги горения повторно горели в 4 из 9 лет.

Несмотря на то, что площадь сгоревших территорий значительно менялась из года в год, общая тенденция за 9 лет была положительной. Резкие увеличения сгоревшей площади происходили в 2002 и 2006 гг., значительная площадь могла также выгореть и сразу на следующий год (например, как это случилось в 2007 г.).

Рис. 2. Территории, затронутые пожарами ежегодно в период с 2000 по 2008 гг. (черная линия – границы ГПБЗ «Черные земли» и заказника «Степной» / «Тингута», темно серый – сгоревшие территории, тонкая серая линия – границы районов, толстая серая линия – граница территории исследования, светло серый – Каспийское море). Fig. 2. Annual total area burned from 2000 to 2008. (black line – Chernye Zemli Zapovednik and nature preserve «Stepnoy» / «Tinguta», dark gray – burned areas, thin gray line – regions boundaries, thick gray line – study area, light gray polygon – Caspian Sea).

Ris 2.jpg

Рис. 3. Количество пожаров за весь период исследования (градации серого – количество пожаров за период исследования, черный пунктир – границы ГПБЗ «Черные земли» и заказника «Степной/Тингута», толстая темно серая линия – граница территория исследования, тонкие светло серая линия – границы районов, светло серый – Каспийское море). Fig. 3. Distribution of number of fires (gray scales – number of fires, see legend, black dashed line – Chernye Zemli Zapovednik and nature preserve «Stepnoy» / «Tinguta», thick gray line – study area, thin gray line – regions boundaries, light gray polygon – Caspian Sea).

Ris 3.jpg