Классические и новые методы повышения разрешения мультиспектральных изображений

Материал из GIS-Lab
Версия от 14:27, 31 июля 2013; Nadiopt (обсуждение | вклад) (добавлен абзац и сноски)
Перейти к навигации Перейти к поиску

данная страница являет собой сокращенный перевод статьи A survey of classical methods and new trends in pansharpening of multispectral images.Авторы Israa Amro, Javier Mateos, Miguel Vega, Rafael Molina и Aggelos K Katsaggelos

КРАТКОЕ СОДЕРЖАНИЕ


Существует целый ряд спутников ДЗЗ, дающих как панхроматические, так и спектрозональные изображения. Для увеличения пространственного разрешения мультиспектральных изображений при одновременном сохранении спектральной информации используется паншарпенинг (pansharpening ) - техника слияния изображений на уровне пикселя. В этой статье мы приводим обзор методов паншарпенинга, предложенных в литературе, даем их классификацию и описание основных характеристик. Также в работе проводится анализ и оценка качества изображения, прошедшего паншарпенинг, как визуальная, так и количественная, и рассматриваются различные показатели качества, предложенные для этой цели.

Предварительная обработка изображений

После того, как данные прошли стандартную обработку (об уровнях обработки изображений см. на сайтах поставщиков снимков), изображения необходимо предварительно обработать для проведения собственно алгоритма паншарпенинга. Эта предварительная обработка может включать в себя регистрацию, передискретизацию и согласование гистограммы мультиспектральных и панхроматических изображениям. Изучим теперь эти процессы в деталях.

Корегистрация изображений

Для решения большинства прикладных задач на один и тот же географический регион требуется совместная обработка двух или более сцен, полученных в разное время или с различных сенсоров. В данном случае роль регистрации изображений состоит в том, чтобы пиксели обоих изображений точно совпадали с соответствующими точками на земле, [1]. Два изображения могут быть взаимно корегистрированы путем привязки каждого из них по координатам наземных точек (или точек, взятых с карты), или же одно из изображений выбирается в качестве главного, к которому привязываются другие [2]. В связи с различными аппаратными характеристиками, проблема корегистрации снимков с различных сенсоров является более сложной, чем корегистрация изображений одного и того же сенсора [3]. Здесь можно столкнуться с такими проблемами, как присутствие на одном из изображений объектов, которые могут только частично появиться на другом изображении или не появляются вообще. Изменение контрастности некоторых областей изображения, множество значений интенсивности одного снимка, которые должны быть отображены одним значением интенсивности на другом снимке или значительная разнородность изображений одной и той же сцены, полученная в результате конфигураций с различным параметрами - также проблемы, решаемые различными методами корегистрации . Существует множество методов корегистрации изображений. Их можно разделить на две категории: зональные методы и объектные методы. Зональные методы, которые не ищут на изображениях одинаковые объекты, включают методы Фурье, методы кросс-корреляции и методы взаимной информации [4]. С серого уровня значений изображения могут быть совершенно разными, и из-за того, что для любых двух различных изображений ни корреляции, ни взаимная информация не является максимальной, если изображения пространственно выровнены, - зональные методы плохо приспособлены к корегистрации мультисенсорных изображений [3]. Объектные методы призваны находить одинаковые объекты на двух изображениях, и они, как показано в литературе, больше подходят для этой задачи. К методам этой категории относятся методы, использующие пространственные отношения, основанные на инвариантных дескрипторах, смягчении (?) и пирамидальных и вейвлет-разложениях изображения [4].

Увеличение частоты дискретизации изображения и интерполяция

Согласование гистограммы

Классификация методов паншарпенинга

Примечания

<references> RA Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd edn. (Orlando, FL: Academic, 1997) JA Richards, X Jia, Remote Sensing Digital Image Analysis: An Introduction, 4th edn. (Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2005) Y Yang, X Gao, Remote sensing image registration via active contour model. Int J Electron Commun 63, 227–234 (2009)

  1. RA Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd edn. (Orlando, FL: Academic, 1997)
  2. JA Richards, X Jia, Remote Sensing Digital Image Analysis: An Introduction, 4th edn. (Secaucus, NJ, USA: Springer-Verlag New York, Inc, 2005)
  3. 3,0 3,1 Y Yang, X Gao, Remote sensing image registration via active contour model. Int J Electron Commun 63, 227–234 (2009)
  4. 4,0 4,1 B Zitova, J Flusser, Image registration methods: A survey. Image and Vision Computing 21, 977–1000 (2003).