Первичная обработка данных SRTM в ГИС SAGA

Материал из GIS-Lab
Версия от 16:30, 12 июня 2013; Darsvid (обсуждение | вклад) (Новая страница: «{{Статья|Черновик}} {{Аннотация|Последовательность шагов по подготовке данных SRTM к анализ…»)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Эта страница является черновиком статьи.


Последовательность шагов по подготовке данных SRTM к анализу

Глобальная цифровая модель высот Shuttle Radar Topography Mission (далее – ЦМВ SRTM), находящаяся в открытом доступе с 2003 года, – общедоступный набор геоданных, активно применяющийся в прикладных исследованиях различной направленности. Ее популярность обуславливается простотой получения, практически глобальным охватом и детальностью, которая по разным оценкам колеблется в диапазоне масштабов от 50 000 до 100 000[1].

Четвертое поколение данных SRTM[2] прошло несколько стадий обработки, позволивших повысить исходное качество. Основной целью этих улучшений было заполнение пробелов, характерных для территорий со сложным рельефом, поверхностей занятых водными объектами и прочих территорий, плохо поддающихся радарной съемке (например, пустынь). Для этого применялись несколько интерполяционных алгоритмов, а в роли вспомогательных источников использовались локальные и национальные ЦМР более высокого разрешения.

Однако, чтобы оценить пригодность ЦМВ для целей геоморфометрического анализа, рекомендуется дать ответы на следующие вопросы (Reuter et al., 2008):

  • насколько точно представлена неровность поверхности (микро- и мезорельеф)?
  • насколько точно представлена «гидрологическая форма» земной поверхности (вогнутые/ выпуклые формы рельефа, эрозия/ аккумуляция, дивергентность/ конвергентность потока воды)?
  • насколько точно могут быть определены реальные тальвеги и водоразделы?
  • насколько согласованы измерения высотных отметок по всей территории исследования.

Оценив с таких позиций данные SRTM можно сделать вывод, что их практическое применение все еще усложняется наличием погрешностей, связанных с технологией получения, т.к. обработка не была направлена на их устранение. К таким в первую очередь следует отнести искажения связанные с неоднородностью земного покрова (растительность, застройка), высокочастотный шум (флуктуации отраженного сигнала) и ложные впадины – их совокупное влияние искажает представление о реальном рельефе местности и усложняет моделирование процессов перераспределения вещества и энергии. Поэтому прежде чем приступить к анализу данных SRTM, рекомендуется провести их предварительную обработку, направленную на (Reuter et al., 2008):

  • удаление грубых ошибок и артефактов;
  • улучшение аппроксимации рельефа;
  • улучшение аппроксимации гидрологических/ экологических процессов (таких как перераспределение поверхностного стока, радиации, отложений и т.д.).

Рассмотрим более детально одну из возможных последовательностей шагов первичной подготовки данных SRTM в ГИС SAGA. В качестве основы используем фрагмент данных SRTM 44_03 в формате GeoTIFF, полученный из каталога CGIAR-CSI для листа топокарты масштаба 1:100 000 M-37-121, предварительно прошедшего процедуру привязки.

  1. соотношение между точностью данных SRTM и различными картографическими масштабами детально рассмотрено в публикациях
    Jarvis, A. Practical use of SRTM data in the tropics: Comparisons with digital elevation models generated from cartographic data / A. Jarvis, J. Rubiano, A. Nelson, A. Farrow and M. Mulligan. – Cali, CO: Centro Internacional de Agricultura Tropical (CIAT), 2004.– 32 p. (Working document no. 198)
    Karwel, A., Ewiak, I. Estimation of the accuracy of the SRTM terrain model on the area of Poland // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – Vol. XXXVII, Part B7. – Beijing, 2008. – p. 169-172
    Ozah, A.P., Kufoniyi, O. Accuracy assessment of contour interpolation from 1:50 000 topographical maps and SRTM data for 1:25 000 topographical mapping // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – Vol. XXXVII, Part B7. – Beijing, 2008 – p. 1347-1353
  2. Jarvis A., Reuter H., Nelson A., Guevara E. Hole-filled seamless SRTM data V.4. International Centre for Tropical Agriculture (CIAT). – 2008. – http://srtm.csi.cgiar.org