Встраивание кэширующего TMS-сервиса в собственное приложение

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Эта страница является черновиком статьи.


Рассмотрена процедура встраивания TileCache в собственное приложение, а также приведет пример создания кэша на базе PostgreSQL.

Введение

Предположим, что вы разрабатываете клиент-серверную Веб-ГИС и вам требуется отображать на клиенте некоторую растровую подложку, которая создается на базе данных хранилища (БД), к которому имеет доступ серверная компонента. Стандартным решением подобной задачи является опубликование данных по протоколу TMS и подключение их на клиенте. TMS-сервис может функционировать в одном из двух режимов: статическом и динамическом. И если вы планируете в дальнейшем тиражировать свое приложение, то использование статического TMS будет заключаться либо в предварительном создании набора тайлов (в случае, если данные, на основе которых будет создаваться TMS-слой, одинаковы для всех инсталляций приложения, например, данные о государственных границах) и распространении их вместе с приложением (что может привести к недопустимому росту размера приложения), либо в предоставлении пользователю инструмента по генерированию тайлов "на месте". Последний вариант в принципе не плох, но его недостаток заключается в том, что пользователю для того чтобы начать работать с вашим приложением потребуется время на заполнение кэша (может занимать от нескольких часов до нескольких дней). Выходом из данного положения служит использование динамического TMS-сервиса, генерирующего тайлы по запросу. И тут возникает проблема. Существующее ПО для создания динамических TMS-сервисов (TileCache, MapProxy) является самостоятельным программным обеспечением и изначально не предназначено для использования в качестве встраиваемых решений. Использовать же MapProxy или TileCache по их прямому назначению в данном случае - не вариант, так как это сводится к тому, что пользователь должен помимо установки вашего приложения установить и настроить тайловый сервер, что может оказаться ему не под силу, да и это очень неудобно. Поэтому решение данной задачи сводится к написанию собственного TMS-сервиса и интеграции его в приложение. Пример решения подобной задачи был рассмотрен в статье Основы работы динамических TMS-сервисов, но основным недостатком получившегося там сервиса является то, что он не поддерживает процедуру кэширования, что очень важно при разработке реального приложения.

В рамках данной статьи рассмотрим создание кэширующего TMS-сервиса на базе классов, предоставляемых TileCache. В качестве рендерера будем использовать - Mapnik. TileCache был выбран в качестве базовой системы в виду того, что он имеет довольно простую и понятную архитектуру в отличие от того же MapProxy, хотя по функционалу в целом значительно уступает последнему.

В качестве языка программирования будем использовать Python, операционная система - Debian GNU/Linux 7.0.

Создание каркаса приложения

Во избежание написания большого количества служебного кода в качестве каркаса нашего приложения будем использовать Веб-фреймворк Pyramid.

Создание каталога будущего проекта

mkdir ~/cache
cd ~/cache

Создание виртуального окружения

virtualenv --no-site-packages env

Установка Pyramid

source env/bin/activate
pip install pyramid

Генерирование структуры проекта

pcreate -s alchemy cache

В файл ~/cache/cache/setup.py в массив requires к имеющимся пакетам добавляем имена пакетов, которые будут использоваться в нашем проекте: psycopg2 и TileCache.

Установка проекта в режиме разработки

cd cache
python setup.py develop

Установка Mapnik

Идейно верное решение - это указать Mapnik как зависимость в файле setup.py для его автоматической установки, но на практике установка Mapnik в виртуальное окружение представляет собой довольно сложную задачу, поэтому для перехода к следующему шагу установите Mapnik в систему, после чего сделайте симлинк на директорию с Python-пакетами виртуального окружения. Для того, чтобы узнать, куда был установлен Mapnik, запустите системный Python и выполните следующие команды:

import mapnik
mapnik.__file__
'/usr/lib/python2.7/dist-packages/mapnik/__init__.py'

Как можно видеть, в нашем случае Mapnik был установлен в каталог /usr/lib/python2.7/dist-packages/mapnik. Находясь в активном виртуальном окружении, создаем симлинк:

ln -s /usr/lib/python2.7/dist-packages/mapnik $VIRTUAL_ENV/lib/python2.7/site-packages/mapnik

Теперь, если запустить Python в виртуальном окружении и дать команду:

import mapnik

то не должно появляться никаких сообщений об ошибках, что свидетельствует о том, что системный Mapnik виден из виртуального окружения.

Хранение кэшированных данных в PostgreSQL

Среди списка поддерживаемых кэшей в Tilecache отсутствуют те или иные СУБД. Конечно, в качестве учебного примера мы могли бы остановиться на использовании какого-нибудь стандартного кэша, например, файлового, но мы немного усложним задачу, реализовав собственный класс, отвечающий за хранение кэшированных данных в СУБД PostgreSQL. Будем считать, что PostgreSQL установлен на той же машине, что и разрабатываемое приложение.

Создание базы данных

Создадим на уровне БД отдельного пользователя, назовём его cacheuser (пароль secret):

sudo su postgres -c "createuser -P -e cacheuser"
Введите пароль для новой роли:
Повторите его:
Должна ли новая роль иметь полномочия суперпользователя? (y - да/n - нет) n
Новая роль должна иметь право создавать базы данных? (y - да/n - нет) n
Новая роль должна иметь право создавать другие роли? (y - да/n - нет) n
CREATE ROLE cacheuser PASSWORD 'md57ea40027c2db9dc1b1b85ad7bf0f5314' NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

Мы создали пользователя, который не обладает правами суперпользователя, не может создавать базы данных и другие роли. От имени пользователя postgres создадим базу данных tilecache и сделаем пользователя cacheuser её владельцем:

sudo su postgres -c "createdb -O cacheuser --encoding=UTF8 tilecache"

Подключение базы данных в приложение

Подключаем созданную БД в наше приложение, для этого в файле ~/cache/cache/development.ini редактируем строку sqlalchemy.url:

sqlalchemy.url = postgresql+psycopg2://cacheuser:secret@localhost/tilecache

Описание модели кэша

Для взаимодействия нашего приложения с базой данных будем использовать ORM SQLAlchemy. Для описания структуры таблицы базы данных, в которой будут храниться кэшированные данные, воспользуемся декларативным синтаксисом SQLAlchemy. Для этого открываем файл ~/cache/cache/cache/models.py и помещаем в него следующее содержимое:

# -*- coding: utf-8 -*-
from sqlalchemy import Column
from sqlalchemy import Integer, Unicode, LargeBinary

from sqlalchemy.orm import scoped_session
from sqlalchemy.orm import sessionmaker

from sqlalchemy.ext.declarative import declarative_base

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

# Хранилище тайлов TMS-слоя
class TileCache(Base):
    __tablename__ = 'tilecache'
    layer = Column(Unicode(50), primary_key=True)
    z = Column(Integer, primary_key=True)
    x = Column(Integer, primary_key=True)
    y = Column(Integer, primary_key=True)
    data = Column(LargeBinary)

Из представленного кода видно, что кэшированные данные будут храниться в таблице tilecache, содержащей 5 полей: layer - поле, содержащее имя слой, тайл которого представлен в записи, x, y, z - координаты тайла, data - собственно сам тайл. Если в вашей базе данных установлен PostGIS, то имеет смысл добавить в эту таблицу дополнительное поле геометрии, которое будет содержать в себе значение охвата тайла. Это поле в дальнейшем очень удобно использовать, например, для очистки фрагмента кэша по какому-либо пространственному условию.

Инициализация базы данных

По описанному классу создадим таблицу в базе данных. Для этого откройте файл ~/cache/cache/cache/scripts/initializedb.py и приведите его в соответствие со следующим фрагментом:

import os
import sys
import transaction

from sqlalchemy import engine_from_config

from pyramid.paster import (
    get_appsettings,
    setup_logging,
    )

from ..models import (
    DBSession,
    Base
    )


def usage(argv):
    cmd = os.path.basename(argv[0])
    print('usage: %s <config_uri>\n'
          '(example: "%s development.ini")' % (cmd, cmd))
    sys.exit(1)

def main(argv=sys.argv):
    if len(argv) != 2:
        usage(argv)
    config_uri = argv[1]
    setup_logging(config_uri)
    settings = get_appsettings(config_uri)
    engine = engine_from_config(settings, 'sqlalchemy.')
    DBSession.configure(bind=engine)
    Base.metadata.create_all(engine)

После этого выполните команду:

initialize_cache_db ~/cache/cache/development.ini

Должно появиться следующее сообщение, свидетельствующее о том, что таблица успешно создана:

2013-07-17 12:05:08,945 INFO  [sqlalchemy.engine.base.Engine][MainThread] select version()
2013-07-17 12:05:08,945 INFO  [sqlalchemy.engine.base.Engine][MainThread] {}
2013-07-17 12:05:08,961 INFO  [sqlalchemy.engine.base.Engine][MainThread] select current_schema()
2013-07-17 12:05:08,962 INFO  [sqlalchemy.engine.base.Engine][MainThread] {}
2013-07-17 12:05:08,980 INFO  [sqlalchemy.engine.base.Engine][MainThread] select relname from pg_class c join pg_namespace n on n.oid=c.relnamespace where n.nspname=current_schema() and relname=%(name)s
2013-07-17 12:05:08,980 INFO  [sqlalchemy.engine.base.Engine][MainThread] {'name': u'tilecache'}
2013-07-17 12:05:08,993 INFO  [sqlalchemy.engine.base.Engine][MainThread]
CREATE TABLE tilecache (
        layer VARCHAR(50) NOT NULL,
        z SERIAL NOT NULL,
        x INTEGER NOT NULL,
        y INTEGER NOT NULL,
        data BYTEA,
        PRIMARY KEY (layer, z, x, y)
)


2013-07-17 12:05:08,998 INFO  [sqlalchemy.engine.base.Engine][MainThread] {}
2013-07-17 12:05:09,286 INFO  [sqlalchemy.engine.base.Engine][MainThread] COMMIT