Ортокоррекция космических снимков с использованием RPC
Введение
Начнем с определения, что же такое ортокоррекция.
Ортотрансформирование (ортокоррекция) изображения (снимка) – математически строгое преобразование исходного изображения (снимка) в ортогональную проекцию и устранение искажений, вызванных рельефом, условиями съемки и типом камеры.[1]
При этом, иногда употребляют не совсем корректный термин орторектификация, который по сути является англоизмом термина orthorectification.
На самом деле orthorectification — ОИ ортотрансформирование, ортоисправление
ортокоррекция (orthocorrection) с трансформированием изображения в заданную проекцию[2]
Существует еще и такое определение. Ортотрансформирование, орторектификация (orthorectification, ortho-transformation, orthofototransformation) — устранение на изображении геометрических искажений, вызванных рельефом, для создания ортофото-снимков, ортофотокарт, ортофотопланов и др. ортотрансформированных (орторектифицированных) изображений и продуктов[3].
Что такое ортотрансформация? Это процесс геометрической коррекции изображений, при котором устраняются перспективные искажения, развороты, искажения вызванные дисторсией объектива и другие. Изображение при этом приводится к плановой проекции, то есть такой при которой каждая точка местности наблюдается строго вертикально, в надир. Чтобы выполнить такое преобразование необходимо устранить искажения, вызванные рельефом. Следовательно, для трансформации нужна модель рельефа, нужно знать высоту местности для каждой точки снимка.[4]
Почему нужно выполнять ортокоррекцию космических снимков, ведь спутники осуществляют съемку с очень большой высоты (сотни километров) и искажения минимальны? Дело в том, что спутник не может все время снимать в надир, иначе пришлось бы ждать очень большое время когда спутник пройдет над заданной точкой. Для устранения этого недостатка космический аппарат "доворачивают" и большинство кадров получаются перспективными. Следует заметить, что углы съемки могут достигать 45 градусов, и при такой высоте это приводит к значительным искажениям.
Зачем проводить ортокоррекцию космических снимков, если все и так на изображении можно различить, а в результате дополнительных операций качество ухудшится? Если целью стоит только выявление фактов по изображению и никаких требований к точности позиционирования, измерению длин и площадей не предъявляется, то проводить ортокоррекцию вовсе не обязательно. Но если нужны измерительные и позиционные свойства изображения, а также если необходимо точное совмещение разновременные изображения (или даже стыковка перекрывающихся включений), то ортокоррекция крайне рекомендуется.
Необходимые данные
Для проведения ортокоррекции космического снимка необходимо:
- Космический снимок в одном из форматов поставки (обычно TIFF)
- Коэффициенты RPC к нему
- Информация о рельефе в виде DEM (Digital Elevation Model)
Рассмотрим подробнее комплекты поставки основных компаний рынка детальной космической съемки: GeoEye и DigitalGlobe (образы продукции собраны на отдельной странице).
GeoEye
Продуктовая линейка GeoEye включает в себя[5]:
- Geo
- GeoProfessional
- GeoStereo
Подробнее о продуктах компании можно почитать скачав брошюру Product Guide (требует регистрацию, но потом дает прямую ссылку).
Нас в первую очередь интересует продукт Geo - который представляет подготовленный набор данных к ортокоррекции (он же самый дешевый).
Комплект поставки продукции GeoEye включает в себя (на примере Transportation GeoEye-1 Sample):
GeoEye_logo.tif po_344780_aoi.dbf po_344780_aoi.prj po_344780_aoi.shp po_344780_aoi.shx po_344780_component.dbf po_344780_component.prj po_344780_component.shp po_344780_component.shx po_344780_image.dbf po_344780_image.prj po_344780_image.shp po_344780_image.shx po_344780_metadata.txt po_344780_rgb_0000000.hdr po_344780_rgb_0000000.tfw po_344780_rgb_0000000.tif po_344780_rgb_0000000_ovr.jgw po_344780_rgb_0000000_ovr.jpg po_344780_rgb_0000000_rpc.txt SingleOrganization_license.txt
Как можно заметить все файлы начинаются на po_344780 - это номер заказа по которому подготовлен это рабочий набор. Если посмотреть на содержимое каталога с использованием wxGIS Catalog (последнюю версию можно скачать по ссылке), то можно увидеть что в комплекте поставки имеются три шейп-файла (район заказа, проекции изображений - я так понимаю до и после предварительной обработки, во всяком случае, обычно они совпадают), текстовый файл метаданных, собственно изображение в формате TIFF, overview в формате JPEG с привязкой и файл с RPC данными.
wxGIS Catalog может работать с ZIP архивами, как с обычными папками. Если посмотреть метаданные изображения (щелкнуть правой клавишей мыши на po_344780_rgb_0000000.tif и выбрать "Свойства"), то можно убедиться, что изображение географически привязано (имеется описание системы координат, значения экстента представляют собой географически координаты, а не пиксельные) и корректно определяется наличие RPC данных.
В диалоге можно посмотреть другие метаданные, извлеченные из изображения.
Следует отметить, что программное обеспечение воспринимает изображение не как один файл в формате TIFF, а как набор из файлов, в который входят, для нашего случая, еще и файлы с расширением hdr, tfw, _rpc.txt. wxGIS Catalog корректно работает с таким набором и при переименовании будет переименовывать все связанные файлы, а при удалении, копировании, перемещении - соответственно, удалять, копировать и перемещать.
Таким образом, мы убедились, что комплект поставки материалов съемки содержит необходимую информацию для выполнения ортокоррекции.
Аналогичный состав имеет комплект поставки материалов съемки с КА Ikonos.
А вот комплект поставки с третьего КА компании - OrbView-3, который стал свободно доступен (подробнее можно почитать на странице описания каталога данных OrbView-3), имеет ряд нюансов.
Комплект поставки продукции GeoEye с КА OrbView-3 включает в себя (на примере территории в Белоруссии):
3v050909p0000897861a520004700712m_001631680.att 3v050909p0000897861a520004700712m_001631680.dbf 3v050909p0000897861a520004700712m_001631680.eph 3v050909p0000897861a520004700712m_001631680.jgw 3v050909p0000897861a520004700712m_001631680.jpg 3v050909p0000897861a520004700712m_001631680.prj 3v050909p0000897861a520004700712m_001631680.pvl 3v050909p0000897861a520004700712m_001631680.shp 3v050909p0000897861a520004700712m_001631680.shx 3v050909p0000897861a520004700712m_001631680.tif 3v050909p0000897861a520004700712m_001631680_aoi.dbf 3v050909p0000897861a520004700712m_001631680_aoi.prj 3v050909p0000897861a520004700712m_001631680_aoi.shp 3v050909p0000897861a520004700712m_001631680_aoi.shx 3v050909p0000897861a520004700712m_001631680_rpc.txt 3v050909p0000897861a520004700712m_001631680_src.dbf 3v050909p0000897861a520004700712m_001631680_src.prj 3v050909p0000897861a520004700712m_001631680_src.shp 3v050909p0000897861a520004700712m_001631680_src.shx unrestricted_license.txt
Как видим названия файлов также имеют общую часть 3v050909p0000897861a520004700712m_001631680 - здесь мы видим дату съемки 050909 (2005-09-09T09:32:38.745600Z). номер в каталоге и уровень обработки 897861a (89786 и 1А), номер заказа 001631680 (OPS001631680). А вот состав файлов отличается. Но главное отличие, что поставляемые TIFF файлы не имеют географической привязки и описания СК, внедренные в файл.
wxGIS на лету подставляет необходимые данные в заголовок TIFF файла при его открытии, но это накладывает ограничение на работу с ZIP архивами - данные не будут записаны в сам файл, поэтому для ортокоррекции материалов съемки с КА OrbView-3 их необходимо предварительно распаковать. Для ортокоррекции в других программных продуктах может понадобится предварительная подготовка таких данных. Особенности ортокоррекции с использованием библиотеки GDAL изложены в отдельной статье.
DigitalGlobe
Продуктовая линейка DigitalGlobe включает в себя[6]:
В продуктовой линейке нас интересует продукты Basic Imagery и Standard Imagery. По поводу возможности ортокоррекции продуктов Basic Imagery не скажу точно (вроде в поставке имеются необходимые метаданные), а вот Standard Imagery наиболее подходящий вариант. Комплект поставки продукции DigitalGlobe включает в себя (на примере QuickBird: Ortho ready standard Bundle 16bit):
RPC
DEM
воспользоваться одной из общедоступных грубых ЦМР: SRTM (разрешение 30-90 м) и ASTER GDEM (разрешение (15-90 м)
Ортокоррекция космических снимков в wxGIS
Bishop Указать как ортокорректировать pan и multi http://gis-lab.info/qa/wxgis-intro.html Bishop Перенести статью в WiKi Остальные операции по ортокоррекции космических снимков в wxGIS являются аналогичными. Подробнее о
Литература
- ↑ Словарь терминов. Журнал Геоматика, 2009, №2. С. 119
- ↑ Англо-русский толковый словарь по геоинформатике. Андрианов В. Ю. - М.: ДАТА+, 2001. - 122 с.
- ↑ Словарь терминов по геоинформатике. Геоинформатика. Тикунов В. С. - М.: Академия, 2005. — 480 с
- ↑ Google maps и другие. Использование картографических веб-сервисов в Digitals. Бондарец А., НПП "Геосистема", Винница
- ↑ Satellite Imagery Products, Copyright © 2012 GeoEye, Inc.
- ↑ Products, © 2012 DIGITALGLOBE, INC.
Ссылки
- Как провести ортотрансформирование изображений IKONOS Ortho-Kit в программном комплексе ENVI
- Ортотрансформирование снимков, полученных со спутника EROS-A
- Ортотрансформирование данных со спутника OrbView-3 в программной среде PCI Geomatica
- Использование программного комплекса ENVI для ортотрансформирования аэрофотоснимков и изображений со спутника SPOT
- Использование коэффициентов рационального многочлена (RPCs) для ортотрансформирования спутниковых изображений IKONOS/QuickBird
- Возможности данных Ikonos и QuickBird для точного трехмерного позиционирования, получения ортоисправленных изображений и создания цифровых моделей поверхности (DSM)
- Геометрическая обработка данных со спутника QuickBird
- Продукты с КА IKONOS
- Оценка геометрической точности данных дистанционного зондирования, полученных со спутника IKONOS
- Точность стереосъемки со спутника IKONOS без наземной привязки
- Определение точностных характеристик снимков QuickBird