Задачи на сфере: обратная геодезическая задача: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
 
Строка 253: Строка 253:
</syntaxhighlight>
</syntaxhighlight>


== Решение обратной задачи средствами PROJ.4 ==
== Решение обратной задачи средствами PROJ ==


В пакет PROJ.4 входит программа '''geod''', предназначенная для решения прямых и обратных геодезических задач на сфере. Так выглядит команда обработки файла '''inv.dat''':
В пакет PROJ входит программа '''geod''', предназначенная для решения прямых и обратных геодезических задач на сфере. Так выглядит команда обработки файла '''inv.dat''':


<syntaxhighlight lang="bash">
<syntaxhighlight lang="bash">
$ geod +a=6371000 -I -f "%f" -F "%.4f" +units=km inv.dat
$ geod +a=6371000 +b=6371000 -I -f "%f" -F "%.4f" +units=km inv.dat
</syntaxhighlight>
</syntaxhighlight>



Текущая версия от 06:46, 10 мая 2020

Эта страница опубликована в основном списке статей сайта
по адресу http://gis-lab.info/qa/sphere-geodesic-invert-problem.html


Обратная геодезическая задача — это нахождение начального направления и расстояния между двумя точками с известными координатами.

Общие положения

В качестве модели Земли принимается сфера с радиусом R, равным среднему радиусу земного эллипсоида. Аналогом прямой линии на плоскости является геодезическая линия на поверхности. На сфере геодезическая линия — дуга большого круга.

Введём следующие обозначения:

  • φ — географическая широта,
  • λ — географическая долгота,
  • α — азимут дуги большого круга,
  • σ — сферическое расстояние (длина дуги большого круга, выраженная в долях радиуса шара).

Линейное расстояние по дуге большого круга s связано со сферическим расстоянием σ формулой s = R σ.

Прямая и обратная геодезические задачи являются важными элементами более сложных геодезических задач.

Постановка задачи

Обратная геодезическая задача
Исходные данные
координаты пунктов Q₁ и Q₂ на сфере — φ₁, λ₁ и φ₂, λ₂.
Определяемые величины
расстояние между пунктами и начальный азимут направления с точки Q₁ на пункт Q₂ — σ, α₁.

На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные.

Алгоритм

Существует великое множество подходов к решению поставленной задачи. Рассмотрим простой и надёжный векторный метод.

Последовательность решения:

  1. преобразовать углы φ₂ и λ₂ в декартовы координаты,
  2. развернуть координатные оси вокруг оси Z на угол λ₁,
  3. развернуть координатные оси вокруг оси Y на угол (90° − φ₁),
  4. преобразовать декартовы координаты в сферические.

Можно устранить второй пункт, если в первом заменить долготу λ₂ на разность долгот (λ₂ − λ₁).

Пример реализации алгоритма в виде функции языка Си:

/*
 * Решение обратной геодезической задачи
 *
 * Аргументы исходные:
 *     pt1  - {широта, долгота} точки Q1
 *     pt2  - {широта, долгота} точки Q2
 *
 * Аргументы определяемые:
 *     azi  - азимут начального направления
 *     dist - расстояние (сферическое)
 */
void SphereInverse(double pt1[], double pt2[], double *azi, double *dist)
{
  double x[3], pt[2];

  SpherToCart(pt2, x);			// сферические -> декартовы
  Rotate(x, pt1[1], 2);			// первое вращение
  Rotate(x, M_PI_2 - pt1[0], 1);	// второе вращение
  CartToSpher(x, pt);	     		// декартовы -> сферические
  *azi = M_PI - pt[1];
  *dist = M_PI_2 - pt[0];

  return;
}

Следует заметить, что прямая и обратная задача математически идентичны, и алгоритмы их решения зеркально отражают друг друга.

Преобразование сферических координат в декартовы

В данном случае в качестве сферических координат φ, λ подставим φ₂, λ₂.

Реализация на Си:

/*
 * Преобразование сферических координат в вектор
 *
 * Аргументы исходные:
 *     y - {широта, долгота}
 *
 * Аргументы определяемые:
 *     x - вектор {x, y, z}
 */
void SpherToCart(double y[], double x[])
{
  double p;

  p = cos(y[0]);
  x[2] = sin(y[0]);
  x[1] = p * sin(y[1]);
  x[0] = p * cos(y[1]);

  return;
}

Вращение вокруг оси

Представим оператор вращения вокруг оси X на угол θ в следующем виде:

Операторы вращения вокруг осей Y и Z получаются перестановкой символов.

Реализация вращения вокруг i-ой координатной оси на Си:

/*
 * Вращение вокруг координатной оси
 *
 * Аргументы:
 *     x - входной/выходной 3-вектор
 *     a - угол вращения
 *     i - номер координатной оси (0..2)
 */
void Rotate(double x[], double a, int i)
{
  double c, s, xj;
  int j, k;

  j = (i + 1) % 3;
  k = (i - 1) % 3;
  c = cos(a);
  s = sin(a);
  xj = x[j] * c + x[k] * s;
  x[k] = -x[j] * s + x[k] * c;
  x[j] = xj;

  return;
}

Преобразование декартовых координат в сферические

В данном случае в роли сферических координат φ, λ окажутся углы (90° − σ), (180° − α₁).

Реализация на Си:

/*
 * Преобразование вектора в сферические координаты
 *
 * Аргументы исходные:
 *     x - {x, y, z}
 *
 * Аргументы определяемые:
 *     y - {широта, долгота}
 *
 * Возвращает:
 *     длину вектора
 */
double CartToSpher(double x[], double y[])
{
  double p;

  p = hypot(x[0], x[1]);
  y[1] = atan2(x[1], x[0]);
  y[0] = atan2(x[2], p);

  return hypot(p, x[2]);
}

Пример программной реализации

Исходники вышеприведённых функций можно найти в архиве Sph.zip в файле sph.c. Кроме того, в файл sph.h включены следующие определения:

#define A_E 6371.0				// радиус Земли в километрах
#define Degrees(x) (x * 57.29577951308232)	// радианы -> градусы
#define Radians(x) (x / 57.29577951308232)	// градусы -> радианы

Теперь напишем программу, которая обращается к функции SphereInverse для решения обратной задачи:

#include <stdio.h>
#include <stdlib.h>
#include "sph.h"

int main(int argc, char *argv[])
{
  char buf[1024];
  double pt1[2], pt2[2];
  double lat1, lon1, lat2, lon2, azi1, azi2, dist;

  while (fgets(buf, 1024, stdin) != NULL) {
    sscanf(buf, "%lf %lf %lf %lf", &lat1, &lon1, &lat2, &lon2);
    pt1[0] = Radians(lat1);
    pt1[1] = Radians(lon1);
    pt2[0] = Radians(lat2);
    pt2[1] = Radians(lon2);
    SphereInverse(pt2, pt1, &azi2, &dist);		// Решение обратной задачи
    SphereInverse(pt1, pt2, &azi1, &dist);		// Вычисление обратного азимута
    printf("%f\t%f\t%.4f\n", Degrees(azi1), Degrees(azi2), dist * A_E);
  }
  return 0;
}

В архиве Sph.zip этот код находится в файле inv.c. Создадим исполняемый модуль inv компилятором gcc:

$ gcc -o inv inv.c sph.c -lm

Впрочем, в архиве есть Makefile. Для MS Windows готовую программу inv.exe можно найти в архиве Sph-win32.zip.

Программа читает данные из стандартного ввода консоли и отправляет результаты на стандартный вывод. Для чтения и записи файлов используются символы перенаправления потока «>» и «<» соответственно. Из каждой строки ввода программа считывает координаты двух точек φ₁, λ₁, φ₂, λ₂, которые должны быть в градусах, решает обратную задачу и записывает в строку вывода α₁, α₂, s (азимуты прямого и обратного направлений в градусах; расстояние между пунктами в километрах, а точнее, в единицах, определённых константой A_E).

Создадим файл inv.dat, содержащий одну строку данных:

30 0 52 54

После запуска программы

$ inv < inv.dat

получим α₁, α₂, s:

44.804060 262.415109 5001.1309

В архиве Sph-py.zip находятся скрипты на языке Питон. Выполнение скрипта в командной консоли:

$ python inv.py inv.dat

Решение обратной задачи средствами PROJ

В пакет PROJ входит программа geod, предназначенная для решения прямых и обратных геодезических задач на сфере. Так выглядит команда обработки файла inv.dat:

$ geod +a=6371000 +b=6371000 -I -f "%f" -F "%.4f" +units=km inv.dat

Параметр +a определяет радиус сферы, -I — решение обратных задач, -f — формат вывода угловых величин, -F — формат вывода длин линий, +units — единица измерения расстояний. В результате получим идентичный вывод:

44.804060 -97.584891 5001.1309

Различие значений α₂ на 360° объясняется тем, что inv выводит азимуты в диапазоне от 0° до 360°, а geod от −180° до +180°.

Альтернативные методы

Некоторые элементы альтернативных методов решения обратной задачи представлены в статье Вычисление расстояния и начального азимута между двумя точками на сфере.

В большинстве своём другие методы основаны на сферической тригонометрии. Многие из них используют вычисление σ или α₁ по таким функциям, как синус, косинус или гаверсинус. Это приводит к неоднозначности результатов вблизи особых значений, когда производная функции равна нулю. Такие методы не могут считаться универсальными.

К наиболее надёжным относится следующий способ:

В сферической тригонометрии углы и стороны должны быть в диапазоне [0, 180°]. Алгоритмизация формул требует анализа и обработки случаев, когда входные величины не попадают в эти рамки.

Ссылки