Задачи на сфере: угловая засечка: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Строка 24: Строка 24:


== Алгоритм ==
== Алгоритм ==
[[Image:sph_ang.png|frame|c|right|Угловая засечка]]


Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления ''α''₁₃ и ''α''₂₃ уже заданы, остаётся определить расстояние ''σ''₁₃ или ''σ''₂₃.
Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления ''α''₁₃ и ''α''₂₃ уже заданы, остаётся определить расстояние ''σ''₁₃ или ''σ''₂₃.
На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике  нет ни одного известного элемента. Однако из решения обратной геодезической задачи для пунктов  могут быть получены расстояние  и азимуты , после чего углы  вычисляются как разности азимутов.
'''Последовательность решения:'''


== Пример программной реализации ==
== Пример программной реализации ==


== Ссылки ==
== Ссылки ==

Версия от 10:16, 12 марта 2014

Эта страница является черновиком статьи.


Линейная засечка — это нахождение положения точки по координатам двух исходных пунктов и значениям азимутов направлений с этих пунктов на определяемую точку.

Общие положения

В качестве модели Земли принимается сфера с радиусом R, равным среднему радиусу земного эллипсоида. Аналогом прямой линии на плоскости является геодезическая линия на поверхности. На сфере геодезическая линия — дуга большого круга.

Введём следующие обозначения:

  • φ — географическая широта,
  • λ — географическая долгота,
  • α — азимут дуги большого круга,
  • σ — сферическое расстояние (длина дуги большого круга, выраженная в долях радиуса шара).

Линейное расстояние по дуге большого круга s связано со сферическим расстоянием σ формулой s = R σ.

Постановка задачи

Исходные данные
координаты пунктов Q₁, Q₂ — φ₁, λ₁, φ₂, λ₂,
начальные направления с пунктов Q₁, Q₂ на точку Q₃ — α₁₃, α₂₃.
Определяемые величины
координаты точки Q₃ — φ₃, λ₃.

Алгоритм

Файл:Sph ang.png
Угловая засечка

Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления α₁₃ и α₂₃ уже заданы, остаётся определить расстояние σ₁₃ или σ₂₃.

На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике нет ни одного известного элемента. Однако из решения обратной геодезической задачи для пунктов могут быть получены расстояние и азимуты , после чего углы вычисляются как разности азимутов.

Последовательность решения:

Пример программной реализации

Ссылки