Основные геоморфометрические параметры: теория: различия между версиями
Darsvid (обсуждение | вклад) |
Darsvid (обсуждение | вклад) |
||
Строка 88: | Строка 88: | ||
Тогда уклон поверхности в центральной ячейке, рассчитанный по {{eqref|7|7}} составит: | Тогда уклон поверхности в центральной ячейке, рассчитанный по {{eqref|7|7}} составит: | ||
<math>\alpha=\tan^{-1}\left ( \sqrt{\left (-0.35 \right )^2+\left (-0.05 \right )^2} \right )=\tan^{-1} \left ( \sqrt {0.125} \right )=\tan^{-1}\left ( 0.3536 \right )</math> | <math>\alpha=\tan^{-1}\left ( \sqrt{\left (-0.35 \right )^2+\left (-0.05 \right )^2} \right )=\tan^{-1} \left ( \sqrt {0.125} \right )=\tan^{-1}\left ( 0.3536 \right )=19.47^{\circ}</math> | ||
}} | }} |
Версия от 13:53, 13 ноября 2013
Расчет (Zevenbergen-Thorne, 1987) и интерпретация уклона, экспозиции, кривизн рельефа земной поверхности
Геморфометрический анализ растровых ЦМР базируется на двух исходных положениях. Первое основывается на математической формализации земной поверхности, а второе предусматривает расчет показателя в точке (пикселе) с учетом окружения.
Согласно первому положению, с математической точки зрения ЦМР является статистической поверхностью, которая характеризует пространственное распределение показателя высоты и может быть представлена функцией вида:
(1) |
где – значение высоты в точке с географическими координатами , которое для лучшей аппроксимации рельефа может быть выражено более сложными функциями, например – полиномиальными (или многочленами). В таком случае многочлен 2-го порядка, используемый для аппроксимации земной поверхности, может иметь следующий вид:
(2) |
где и географические координаты точки, высоту которой необходимо определить, – коэффициенты уравнения аппроксимирующей поверхности 2-го порядка. Многочлены являются одними из наиболее простых и хорошо изученных функций в математике. Они характеризуются такими свойствами как непрерывность и сглаженность, благодаря чему их легко можно интегрировать и дифференцировать. Это открывает возможности использования математического анализа не только для более совершенного представления земной поверхности, но и для изучения ее свойств, например, на основе производных разных порядков.
Согласно второму положению, основной аналитической операцией в ГИС, которая используется для расчета большинства параметров на основе растровых ЦМР является анализ окружения. Он позволяет количественно описать связь между точкой (пикселем) и его ближайшим окружением, применяя для расчета локальное (чаще всего, размером 3×3 пиксела) скользящее окно (рис. 1).
Окно двигается через все поверхность растра (в направлении от верхнего левого до нижнего правого угла) и последовательно применяет в каждой позиции одну и ту же математическую операцию (расчетную формулу) для ячеек основного растра. Таким образом, результат расчетов определяется формулой, которая используется для сравнения значений центральной ячейки с соседними. В результате получается новый растр, аналогичный по пространственному охвату исходной ЦМР, но с другим параметром.
В данной статье мы будем рассматривать особенности расчета основных геморфометрических параметров на примере алгоритма Zevenbergen-Thorne (Zevenbergen, Thorne 1987), который характеризуется расчетной эффективностью и высокой достоверностью результатов (Skidmore 1989, Jones 1998, Zhou, Liu 2004, Rodríguez, Suarez 2010). Кроме того, он реализован как в Открытых (SAGA), так и проприетарных ГИС (кривизны в ArcGIS, расширение для ArcGIS DEM Surface Tools от Jenness Enterprises).
Алгоритм Zevenbergen-Thorne использует модификацию (2) следующего вида:
(3) |
где – коэффициенты аппроксимации, рассчитанные с помощью полиномов Лагранжа на основе 9 значений в ячейках окна 3×3. Геоморфометрические параметры получаются в результате дифференциациии (3) и решения соответствующих уравнений для центральной ячейки квадратной матрицы 3×3.
Основные геоморфометрические параметры, рассчитываемые на основе производных первого порядка
Фундаментальные геморфометрических параметры уклона и экспозиции взаимосвязаны, т.к. оба эти показателя характеризуют градиент поверхности, т.е. интенсивность изменения ее значений в пространстве, которая может быть выражена производной первого порядка. Как производная поверхности первого порядка, градиент характеризуется величиной (уклоном) и направлением (экспозицией).
Уклон поверхности (Slope)
Понятие
Уклон поверхности – угол наклона в точке пересечения между горизонтальной плоскостью и плоскостью касательной к земной поверхности; фиксирует интенсивность перепада высот (градиент) между двумя заданными точками (рис. 2)
Если земная поверхность представлена функцией , то уклон рассчитывается с учетом изменений значений в двух направлениях как :
(4) |
где и - производные первого порядка, представляющие изменение значений абсолютной высоты с запада на восток () и с севера на юг ().
Расчет по Zevenbergen-Thorne
Процедура определения уклона поверхности по алгоритму Zevenbergen-Thorne сводится к следующим шагам (рис. 3):
1. определение уклона поверхности в направлении с востока на запад:
(5) |
2. определение уклона поверхности в направлении с севера на юг:
(6) |
где - высотные отметки в соответствующих ячейках растра, а - расстояние между индивидуальными элементами матрицы высот, другими словами – пространственное разрешение растра. При этом предусматривается, что единицы измерения абсолютной высоты и пространственного разрешения идентичны (как правило, метры);
3. определение интегрального значения уклона поверхности для центральной ячейки скользящего окна:
(7) |
Рассмотрим алгоритм на примере Рис. 4: