Оценка точности тематических карт: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
Строка 103: Строка 103:


<center><math>{O} = \sum^{q}_{j=1} {p_{jj}}</math>, (8)</center>
<center><math>{O} = \sum^{q}_{j=1} {p_{jj}}</math>, (8)</center>
Приведем пример с числовыми данными. Допустим, имеется тематическая карта с тремя категориями/классами. Для оценки точности в каждой категории случайный образом заложено по 10 точек. Для каждой точки определена категория карты (map categories) и справочная (эталонная) категория (reference categories), на основании этих данных составлена типовая матрица ошибок (табл. 3).
<center>Таблица 3. Типовая матрица ошибок (matrix error)</center>
<center>
{| class="wikitable" alighn="center"
|-
! Категория/класс!! 1 !! 2 !! 3 !! Всего !! Площадь
|-style="vertical-align:top"
|1|| 9 || 1 || 0 || 10  || 300 
|-style="vertical-align:top"
|2|| 1 || 7 || 2 || 10  || 200 
|-style="vertical-align:top"
|3|| 2 || 4 || 4 || 10  || 100
|-style="vertical-align:top"
|Всего|| 12 || 12 || 6 || 30  || 600
|}
Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.
</center>
Рассчитаем матрицу ошибок с учетом значений площади для каждой категории по формуле (1), но сначала рассчитаем процентное соотношение площадей для 1-ой категории по формуле (2):
<center><math>{W_i}=\frac {300}{600} = \frac {1}{2}</math></center>
Аналогичным образом рассчитаем значения для остальных категорий: 2-3. Занесем результаты расчетов в соответствующие ячейки 5-ой колонки таблицы 4.
<center><math>{p_{11}}=\frac {1}{2} \times \frac {9}{10} = \frac {9}{20}</math></center>
Аналогичным образом рассчитаем значения для остальных ячеек таблицы 3. Занесем результаты расчетов в соответствующие ячейки 3-5 колонок таблицы 4.

Версия от 20:55, 12 января 2016

Эта страница является черновиком статьи.


Методические подходы для оценки точности тематических карт

Введение

Данная статья является кратким и довольно вольным переводом работы «Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation» [1]. Основной целью авторов данной работы было описание стратегии использования информации о точности тематической карты для оценки площади выделенных классов с указанием доверительных интервалов. Авторы имеют еще одна работу по данной тематике [2], позволяющую глубже погрузиться в механизм расчетов точности тематических карт. Авторы указывают [1], что в статьях посвященных исследованию изменений растительного покрова довольно часто упускается важная информация о точности созданных тематических карт или ошибках в определении площадей выделенных классов. Отмечается, что для более полного использования информации, представленных на данных картах в статьях необходимо обязательно указывать:

  1. Показатели точности: "общая точность классификации" (Overall accuracy), "точность пользователя" (User's accuracy) и "точность производителя" (Producer's accuracy). Более подробно со смысловым содержанием данных ошибок можно познакомиться в данной статье [3].
  2. Площади выделенных классов с поправкой на ошибки классификации.
  3. Указание ошибки среднего (SE) или доверительного интервала (CI) оцениваемых площадей.

Несколько простых числовых примеров позволят проследить последовательность расчетов данных показателей для простой случайной, систематической и стратифицированной случайной выборки. Выборка - это набор точек на оцениваемой тематической карты в атрибутах которых записаны значения класса взятые с самой карты, а также полученные из иных источников (полевых исследований, снимков более высокого пространственного разрешения и т.д.).

Практическая часть

Приведем пример расчета ошибок классификации тематической карты в общем виде. Предположим необходимо оценить точность классификации космического снимка с q категориями/классами и оценить площадь каждой уникальной категории с указанием ошибки. Для этого либо случайным, либо систематическим образом закладывается выборка из n-го количества точек и строится типовая матрица ошибок (matrix error, табл.1). В рядах данной таблицы записываются категории карты (i = 1, 2, … q), а в колонках – справочные (экспертные) категории (j = 1,2, …, q). Правила, по которым заполняется данная таблица можно посмотреть здесь [3]. Отметим, что справочные категории считаются эталонными, т.е. получены из источников заведомо более точных, чем оцениваемая тематическая карта.

Таблица 1. Типовая матрица ошибок (matrix error)
Категория/класс 1 2 ... q Всего
1 n11 n1q n1
2 ... ... ... ... ...
... ... ... ... ... ...
q nq1 ... ... nqq nq
Всего n1 ... ... nq n

Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.

Однако как считают авторы приводимой здесь методики [1,2], более информативной является так называемая преобразованная матрица ошибок, учитывающая относительные значения площади каждой категории (табл. 2). Значения для каждой ячейки данной матрицы (табл. 2) вычисляются по формуле:

, (1)

где nij – значение в соответствующей ячейки матрицы с координатами i, j (табл. 1);

ni – суммарное значение i-ой категории карты (табл. 1);

Wi – отношение суммарной площади i-ой категории, к общей площади карты, т.е.:

Результаты расчетов записываются в преобразованную матрицу ошибок (табл. 2).

Таблица 2. Преобразованная матрица ошибок, учитывающая соотношения площадей категорий
Категория/класс 1 2 ... q Всего
1 p11 p1q p1
2 ... ... ... ... ...
... ... ... ... ... ...
q pq1 ... ... pqq pq
Всего p1 ... ... pq 1
Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.

Ошибки классификации оказывают влияние на оценку площади соответствующей категории. Оценить общую площадь категории можно путем непосредственных измерений с тематической карты. Другой способ оценки площади опирается на справочные (экспертные) категории карты (столбцы в табл. 2). В этом случае площадь соответствующей категории находится путем переумножения общей площади карты на суммарные значения категорий колонок:

, (2)

Выражение (2) может быть записано в развернутом виде:

, (2')

Т.е. происходит переоценка площадей категорий, опирающиеся на справочные значения категорий.

Среднее квадратичное отклонение площади соответствующей категории определяется по формулам (3)-(4):

, (3)

, (4)

Значение площади с доверительным интервалом равным 95% записывается в виде:

, (5)

Принимается, что ошибка имеет z-распределения, при 95% доверительном интервале, z=1.96, округлили до z=2.

Формулы (1) – (5) применены как к случайной, так и систематической или стратифицированной выборке.

Точность пользователя (6), точность производителя (7) и общая точность карты (8) также оценивается с учетом площадей каждой категории, т.е. данные для расчетов берутся из табл. 2.

, (6)
, (7)
, (8)

Приведем пример с числовыми данными. Допустим, имеется тематическая карта с тремя категориями/классами. Для оценки точности в каждой категории случайный образом заложено по 10 точек. Для каждой точки определена категория карты (map categories) и справочная (эталонная) категория (reference categories), на основании этих данных составлена типовая матрица ошибок (табл. 3).

Таблица 3. Типовая матрица ошибок (matrix error)
Категория/класс 1 2 3 Всего Площадь
1 9 1 0 10 300
2 1 7 2 10 200
3 2 4 4 10 100
Всего 12 12 6 30 600

Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.

Рассчитаем матрицу ошибок с учетом значений площади для каждой категории по формуле (1), но сначала рассчитаем процентное соотношение площадей для 1-ой категории по формуле (2):

Аналогичным образом рассчитаем значения для остальных категорий: 2-3. Занесем результаты расчетов в соответствующие ячейки 5-ой колонки таблицы 4.


Аналогичным образом рассчитаем значения для остальных ячеек таблицы 3. Занесем результаты расчетов в соответствующие ячейки 3-5 колонок таблицы 4.