Оценка точности тематических карт: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
Строка 75: Строка 75:
Т.е. происходит переоценка площадей категорий, опирающиеся на справочные значения категорий.
Т.е. происходит переоценка площадей категорий, опирающиеся на справочные значения категорий.


Среднее квадратичное отклонение площади соответствующей категории определяется по формуле:  
Среднее квадратичное отклонение площади соответствующей категории определяется по формулам (3)-(4):  


<center>
<center>
Строка 82: Строка 82:
\sum^{q}_{i=1} {W_i^2} \frac{\frac{{n_{ij}}}{n_i}(1-\frac{{n_{ij}}}{n_i})}{x_i-1}
\sum^{q}_{i=1} {W_i^2} \frac{\frac{{n_{ij}}}{n_i}(1-\frac{{n_{ij}}}{n_i})}{x_i-1}
}
}
</math>
</math>, (3)
</center>
</center>
<center><math>S({A_j})= {A_{tot}} \times S({p_j}) </math>, (4)</center>

Версия от 19:50, 12 января 2016

Эта страница является черновиком статьи.


Методические подходы для оценки точности тематических карт

Введение

Данная статья является кратким и довольно вольным переводом работы «Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation» [1]. Основной целью авторов данной работы было описание стратегии использования информации о точности тематической карты для оценки площади выделенных классов с указанием доверительных интервалов. Авторы имеют еще одна работу по данной тематике [2], позволяющую глубже погрузиться в механизм расчетов точности тематических карт. Авторы указывают [1], что в статьях посвященных исследованию изменений растительного покрова довольно часто упускается важная информация о точности созданных тематических карт или ошибках в определении площадей выделенных классов. Отмечается, что для более полного использования информации, представленных на данных картах в статьях необходимо обязательно указывать:

  1. Показатели точности: "общая точность классификации" (Overall accuracy), "точность пользователя" (User's accuracy) и "точность производителя" (Producer's accuracy). Более подробно со смысловым содержанием данных ошибок можно познакомиться в данной статье [3].
  2. Площади выделенных классов с поправкой на ошибки классификации.
  3. Указание ошибки среднего (SE) или доверительного интервала (CI) оцениваемых площадей.

Несколько простых числовых примеров позволят проследить последовательность расчетов данных показателей для простой случайной, систематической и стратифицированной случайной выборки. Выборка - это набор точек на оцениваемой тематической карты в атрибутах которых записаны значения класса взятые с самой карты, а также полученные из иных источников (полевых исследований, снимков более высокого пространственного разрешения и т.д.).

Практическая часть

Приведем пример расчета ошибок классификации тематической карты в общем виде. Предположим необходимо оценить точность классификации космического снимка с q категориями/классами и оценить площадь каждой уникальной категории с указанием ошибки. Для этого либо случайным, либо систематическим образом закладывается выборка из n-го количества точек и строится типовая матрица ошибок (matrix error, табл.1). В рядах данной таблицы записываются категории карты (i = 1, 2, … q), а в колонках – справочные (экспертные) категории (j = 1,2, …, q). Правила, по которым заполняется данная таблица можно посмотреть здесь [3]. Отметим, что справочные категории считаются эталонными, т.е. получены из источников заведомо более точных, чем оцениваемая тематическая карта.

Таблица 1. Типовая матрица ошибок (matrix error)
Категория/класс 1 2 ... q Всего
1 n11 n1q n1
2 ... ... ... ... ...
... ... ... ... ... ...
q nq1 ... ... nqq nq
Всего n1 ... ... nq n

Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.

Однако как считают авторы приводимой здесь методики [1,2], более информативной является так называемая преобразованная матрица ошибок, учитывающая относительные значения площади каждой категории (табл. 2). Значения для каждой ячейки данной матрицы (табл. 2) вычисляются по формуле:

pij = Wi×nij/ni, (1)

где nij – значение в соответствующей ячейки матрицы с координатами i, j (табл. 1);

ni – суммарное значение i-ой категории карты (табл. 1);

Wi – отношение суммарной площади i-ой категории, к общей площади карты, т.е.:

Wi = Ai/Aобщая

Результаты расчетов записываются в преобразованную матрицу ошибок (табл. 2).

Таблица 2. Преобразованная матрица ошибок, учитывающая соотношения площадей категорий
Категория/класс 1 2 ... q Всего
1 p11 p1q p1
2 ... ... ... ... ...
... ... ... ... ... ...
q pq1 ... ... pqq pq
Всего p1 ... ... pq 1
Примечание: категории карты указаны в строках, а справочные (экспертные) категории в колонках таблицы.

Ошибки классификации оказывают влияние на оценку площади соответствующей категории. Оценить общую площадь категории можно путем непосредственных измерений с тематической карты. Другой способ оценки площади опирается на справочные (экспертные) категории карты (столбцы в табл. 2). В этом случае площадь соответствующей категории находится путем переумножения общей площади карты на суммарные значения категорий колонок:

Aj = Atot × pj, (2)

Выражение (2) может быть записано в развернутом виде:

, (2')

Т.е. происходит переоценка площадей категорий, опирающиеся на справочные значения категорий.

Среднее квадратичное отклонение площади соответствующей категории определяется по формулам (3)-(4):

, (3)

, (4)