Вычисление площади полигона на сфере и на эллипсоиде: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Строка 64: Строка 64:
Выбор именно этого радиуса не случаен: эллипсоид Кларка 1866 по сей день широко используется в странах Северной Америки в картографических и кадастровых целях.
Выбор именно этого радиуса не случаен: эллипсоид Кларка 1866 по сей день широко используется в странах Северной Америки в картографических и кадастровых целях.


В большинстве своём программы GIS не вычисляют площадей на сфере. Тем не менее в картографических целях '''ArcGIS''' включает два эллипсоида с характерными названиями: <tt>“Authalic sphere (ARCINFO)”</tt> (код <tt>“SPHEROID["Sphere_ARC_INFO",6370997,0]”</tt>) и более новый <tt>“Authalic sphere”</tt> (код <tt>“SPHEROID["Sphere",6371000,0]”</tt>).
В большинстве своём программы GIS не вычисляют площадей на сфере. Тем не менее, в картографических целях '''ArcGIS''' включает два эллипсоида с характерными названиями: <tt>“Authalic sphere (ARCINFO)”</tt> (код <tt>“SPHEROID["Sphere_ARC_INFO",6370997,0]”</tt>) и более новый <tt>“Authalic sphere”</tt> (код <tt>“SPHEROID["Sphere",6371000,0]”</tt>).


В пакете '''PROJ.4''' также имеется эллипсоид <tt>“sphere”</tt>: параметры <tt>“a=6370997.0”</tt>, <tt>“b=6370997.0”</tt>, описание <tt>“Normal Sphere (r=6370997)”</tt>.
В пакете '''PROJ.4''' также имеется эллипсоид <tt>“sphere”</tt>: параметры <tt>“a=6370997.0”</tt>, <tt>“b=6370997.0”</tt>, описание <tt>“Normal Sphere (r=6370997)”</tt>.

Версия от 09:40, 20 марта 2014

Эта страница является черновиком статьи.


Одна-две фразы по существу.

Общие положения

Многоугольник на сфере

Определим полигон как простой многоугольник — участок поверхности, ограниченный замкнутой полилинией без самопересечений.

Полилиния в свою очередь — ломаная, образованная отрезками геодезических линий.

Геодезическая линия на плоскости — это прямая; геодезическая линия на сфере — дуга большой окружности.

Полный поворот контура

В общем случае определение площади многоугольника на искривлённой поверхности — нетривиальная задача. Нужно интегрировать по поверхности с пределами, заданными неявно. К счастью, математика может предложить обходные пути решения задачи.

Представим себе точку, движущуюся вдоль контура полигона. Вершины являются точками поворота. Внутренний угол при вершине θ равен разности направлений α в предыдущую и следующую вершины, а поворот есть угол τ, смежный внутреннему:

На евклидовой плоскости, обойдя любой замкнутый контур без самопересечений, точка совершает поворот ровно на одну окружность — 360°, или 2π радиан. В случае многоугольника этот поворот складывается из суммы поворотов в вершинах.

На поверхности с ненулевой гауссовой кривизной общий поворот отличается от 2π на величину избытка или недостатка, пропорционального кривизне поверхности и площади фигуры.

Площадь полигона на сфере

Сферический избыток

В общем случае кривизна поверхности меняется в каждой точке, но не на сфере! Кривизна сферы постоянна, и площадь замкнутой фигуры однозначно соотносится с полным поворотом контура.

Отличие полного поворота от 2π радиан называется сферическим избытком ε, который пропорционален площади полигона S:

где R — радиус сферы.

Алгоритм вычисления площади

Пусть n-угольник задан координатами вершин φi, λi, где φi — широта i-ой вершины, λi — долгота, i = 1, … , n.

  1. Для каждой стороны из решения обратной геодезической задачи для её конечных вершин находим прямые и обратные азимуты αi, i+1 и αi+1, i.
  2. Для каждой вершины по азимутам αi, i−1 в предыдущую и αi, i+1 в последующую вершины находим поворот τi и добавляем его к полному повороту τ.
  3. Вычисляем сферический избыток ε.
  4. Вычисляем площадь полигона S.

Радиус сферы

Радиус сферы выбирается таким образом, чтобы минимизировать погрешности, вызванные тем, что кривизна земной поверхности в разных точках различна.

В геодезической и картографической практике в качестве модели Земли принимают эллипсоид вращения, характеризуемый величинами экваториального радиуса a и сжатия f. Соответствующая сфера должна иметь такую же площадь, как и принимаемый за основу эллипсоид. Такая сфера называется эквивалентной (authalic sphaera по латыни).

Ниже мы приведём формулы вычисления радиуса эквивалентной сферы по параметрам эллипсоида. Пока же поближе посмотрим на пару-тройку популярных программных пакетов.

MapInfo — единственная известная нам программа, вычисляющая площади на сфере по умолчанию. Несложные эксперименты («реверс-инжиниринг») показывает, что радиус сферы не зависит от того, на каком эллипсоиде построена координатная система обрабатываемых данных, — он всегда равен 6370997 метров ровно. Анализ используемых земных эллипсоидов показывает, что это соответствует радиусу эквивалентной сферы эллипсоида Кларка 1866 года, определяемого величинами экаториального радиуса a = 6378206.4 м и полярного радиуса b = 6356583.8 м; точное значение радиуса Rauth = 6370997.2406 м, округлённое до метра — 6370997 м.

Выбор именно этого радиуса не случаен: эллипсоид Кларка 1866 по сей день широко используется в странах Северной Америки в картографических и кадастровых целях.

В большинстве своём программы GIS не вычисляют площадей на сфере. Тем не менее, в картографических целях ArcGIS включает два эллипсоида с характерными названиями: “Authalic sphere (ARCINFO)” (код “SPHEROID["Sphere_ARC_INFO",6370997,0]”) и более новый “Authalic sphere” (код “SPHEROID["Sphere",6371000,0]”).

В пакете PROJ.4 также имеется эллипсоид “sphere”: параметры “a=6370997.0”, “b=6370997.0”, описание “Normal Sphere (r=6370997)”.

Ссылки