Конформное преобразование: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
Строка 1: Строка 1:
[[Category:Черновики]]
[[Category:Черновики]]


Конформное преобразование на плоскости широко используется в геодезии при создании местных координатных систем на небольшие территории, ограниченные, как правило, размерами населённого пункта.
Конформное преобразование на плоскости широко используется в геодезии при создании местных координатных систем на небольшие территории, ограниченные размерами населённого пункта.


== Введение ==
== Введение ==
Строка 12: Строка 12:
\end{array}</math>
\end{array}</math>


где ''m'' — масштабный множитель, ''θ'' — угол разворота, ''X''<sub>0</sub>, ''Y''<sub>0</sub>, ''x''<sub>0</sub>, ''y''<sub>0</sub> — как правило, координаты одного из геодезических пунктов в ГСК и МСК. Этот набор параметров называется «ключ».
где ''m'' — масштабный множитель, ''θ'' — угол разворота, ''X''<sub>0</sub>, ''Y''<sub>0</sub>, ''x''<sub>0</sub>, ''y''<sub>0</sub> — координаты одного из геодезических пунктов в ГСК и МСК, как правило. Этот набор параметров называется «ключ».


Исходный материал для определения ключа — пары координат пунктов геодезической сети, полученные из независимого уравнивания одних и тех же измерений в МСК и в ГСК. В зависимости от класса пунктам (вернее, соответствующим парам уравнений) назначаются веса ''p''.
Исходный материал для определения ключа — пары координат пунктов геодезической сети, полученные из независимого уравнивания одних и тех же измерений в МСК и в ГСК. В зависимости от класса пунктам (вернее, соответствующим парам уравнений) назначаются веса ''p''.

Версия от 10:16, 9 марта 2013


Конформное преобразование на плоскости широко используется в геодезии при создании местных координатных систем на небольшие территории, ограниченные размерами населённого пункта.

Введение

Следующие формулы связывают координаты точек x, y, заданные в местной системе координат (МСК), и координаты X, Y, заданные в государственной системе координат (ГСК):

где m — масштабный множитель, θ — угол разворота, X0, Y0, x0, y0 — координаты одного из геодезических пунктов в ГСК и МСК, как правило. Этот набор параметров называется «ключ».

Исходный материал для определения ключа — пары координат пунктов геодезической сети, полученные из независимого уравнивания одних и тех же измерений в МСК и в ГСК. В зависимости от класса пунктам (вернее, соответствующим парам уравнений) назначаются веса p.

Алгоритм нахождения параметров

В общем случае для определения параметров конформного преобразования принимается следующая математическая модель:

и вычислению подлежат четыре параметра.

Очевидно, конформное преобразование является частным случаем аффинного.

Вычисление взвешенных средних

Перенос осей в центр масс

Вычисление a1 и b1

Вычисление a0 и b0

Вычисление невязок

Невязки позволяют выявить точки, плохо укладывающиеся в полученную модель. Классическая процедура удаляет такие «отлетающие» точки, после чего вычисление параметров повторяется без них. Робастные процедуры переназначают веса уравнениям в соответствии с невязками, и повторное вычисление повторяется с полным набором точек при том, что «отлетающие» влияют на результат незначительно.

Кроме того, невязки необходимы для оценки точности измерений и результатов в целом.

Вычисление ключа

Вычислим масштабный множитель и угол разворота:

Выберем пункт с малыми невязками по возможности в середине массива точек. Его координаты в обеих системах Xi, Yi, xi, yi становятся параметрами X0, Y0, x0, y0.

Впрочем, такой пункт может быть выбран ещё до вычисления параметров. Тогда параметры a0, b0 теряют независимость, и их определение становится ненужным. Шаги 1 и 4 выпадают из алгоритма, а шаг 2 заменяется на следующий набор уравнений:

В результате параметры a1, b1 и m, θ получатся несколько другими. Впрочем, отличие, как правило, несущественно даже по меркам геодезии.