Suomi NPP: краткая характеристика: различия между версиями
Nadiopt (обсуждение | вклад) (изменение названия) |
Нет описания правки |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
{{Статья|Опубликована|npp-suomi}} | |||
''Данная статья представляет собой выборочный перевод материалов с сайта http://npp.gsfc.nasa.gov/ и https://directory.eoportal.org/web/eoportal/satellite-missions/s/suomi-npp''<br /> | ''Данная статья представляет собой выборочный перевод материалов с сайта http://npp.gsfc.nasa.gov/ и https://directory.eoportal.org/web/eoportal/satellite-missions/s/suomi-npp''<br /> |
Текущая версия от 20:49, 1 апреля 2013
по адресу http://gis-lab.info/qa/npp-suomi.html
Данная статья представляет собой выборочный перевод материалов с сайта http://npp.gsfc.nasa.gov/ и https://directory.eoportal.org/web/eoportal/satellite-missions/s/suomi-npp
Введение
Изучение, мониторинг и прогнозирование климата (в долгосрочной перспективе) и краткосрочных колебаний погоды остаются важными задачами. Экономическая конкурентоспособность, здоровье и благополучие человека, а также глобальная безопасность отчасти зависят от нашей способности понять изменения окружающей среды и адаптироваться к ним.
За последние десять лет NASA запустила серию спутников, в том числе группировку аппаратов, известных как «Система наблюдения Земли» (EOS), которые обеспечивают нас данными о динамике географической оболочки, включая океаны, атмосферу, облака, растительность и льды.
Сейчас NASA участвует в создании нового поколения спутников для глобальных экологических наблюдений. Следующим важным шагом в этом переходе является «Подготовительный проект NPOESS» (NPP). Этот спутник создан в партнерстве между NASA, Национальным управлением океанических и атмосферных исследований США (NOAA) и ВВС.
В январе 2012 года НАСА переименовала свой новый спутник ДЗЗ NPP, который был запущен 28 октября 2011 года, в Suomi NPP (Национальное полярно-орбитальное партнерство). Такое название было присвоено аппарату в честь Вернера Э. Суоми, метеоролога из Университета Висконсина, который является признанным "отцом спутниковой метеорологии". Об этом было объявлено 24 января 2012 года на ежегодном собрании Американского метеорологического общества в Новом Орлеане, штат Луизиана.
Вернер Суоми (1915-1995) родился и вырос в штате Миннесота. Почти вся его карьера связана с Университетом Висконсин-Мэдисон, где в 1965 году он основал центр космической науки и техники (SSEC) при финансовой поддержке NASA. Центр известен исследованиями и разработками для спутниковых наблюдений Земли. В 1964 году Суоми занимал должность главного ученого Бюро погоды США на один год. Исследования и изобретения Вернера Суоми способствовали существенному улучшению прогнозирования погоды и нашего понимания глобальной погоды.
Миссия Suomi NPP
Suomi NPP — это спутник, который несет на борту пять различных инструментов для мониторинга окружающей среды Земли и климата планеты. Данные NPP будут использоваться для мониторинга почвенно-растительного покрова и продуктивности растительности. Также NPP будет изучать атмосферный озон и аэрозоли, а также принимать данные о температуре поверхности океанов и суши. Также NPP будет заниматься мониторингом морских льдов, покровных и горных ледников по всему миру. Кроме того, аппарат поможет фиксировать стихийные бедствия, такие, как извержения вулканов, лесные пожары, засухи, наводнения, пыльные бури и ураганы/тайфуны.
В целом, NPP призван следить из космоса за состоянием Земли, обеспечивая преемственность в многолетних спутниковых наблюдениях и создавая базу для будущих миссий. NPP двигается по полярной орбите, проходя от Северного полюса к Южному и обратно примерно 14 раз в день (рис. 1).
Инструменты на борту NPP
Инструменты, находящиеся на борту NPP, подробно описаны на специальной веб-странице.
Visible Infrared Imaging Radiometer Suite (VIIRS)
VIIRS — сканирующий радиометр, собирает изображения Земли в видимом и инфракрасном диапазонах и осуществляет радиометрию суши, атмосферы, криосферы и океанов. Он расширяет и улучшает серии измерений, полученных аппаратами AVHRR и MODIS. Данные VIIRS используются для изучения свойств облаков и аэрозолей, цвета океана, температуры земной поверхности, передвижений и температуры льда, детектирования пожаров и измерения альбедо поверхности Земли. Климатологи могут использовать данные VIIRS для изучения глобальных изменений климата.
VIIRS сочетает в себе радиометрическую точность NOAA AVHRR с высоким пространственным разрешением (0,65 км) системы OLS спутниковой метеорологической программы Минообороны США. В качестве ключевой части программ JPSS и DWSS, VIIRS обеспечивает изображение облаков примерно в дюжине каналов, а также формирует покрытие дневными и ночными снимками в нескольких каналах ИК-диапазона.
VIIRS дает многоканальные изображения для поддержки съемки высокого разрешения и создания различных прикладных продуктов, например, изображений ураганов видимом и ИК диапазонах, обнаружения пожаров, дыма и атмосферных аэрозолей.
VIIRS также предоставляет возможности для получения изображений более высокого разрешения и более точных измерений температуры поверхности океана, чем в настоящее время обеспечивает инструмент AVHRR, а также обеспечивает оперативное наблюдение за цветом океана и создание производных продуктов.
Спецификации инструмента
Спектральные диапазоны | |
Видимый/ИК | 9+ каналов (?) |
Средний ИК | 8 каналов |
Длинноволновый ИК | 4 канала |
Оптика: | апертура 9.1 см, фокусное расстояние 114 см |
Вес: | 275 кг |
Параметры приема данных: | |
Ширина полосы охвата: | ±56°, 3000 км |
Интервал горизонтальной выборки на поверхности земли: | <1.6 км в конце прохода |
Квантование данных: | 12 bit –14 bit |
Скорость передачи данных: | 10.5 Mbps (max.) |
Cross-track Infrared Sounder (CrIS)
Новый мощный инфракрасный прибор, установленный на NPP, разработан для получения более точной информации о земной атмосфере и улучшения прогнозов погоды и нашего понимания климатических процессов.
Cris, спектрометр с 1305 инфракрасными спектральными каналами, предназначен для обеспечения съемки трехмерной структуры атмосферы с высочайшим спектральным разрешением. Зонд AIRS миссии EOS Aqua, начатой в 2002 году, показал, насколько полезным для понимания атмосферных явлений может быть этот тип данных. CrIS будет продолжать сбор данных для численных моделей NOAA , используемых для прогноза погоды.
Спецификации инструмента:
Спектральные каналы: | 1305, три диапазона: LWIR (9,14 - 15.38uм); MWIR (5,71 - 8.26uм) и SWIR (3,92 - 4,64 мкм). |
Ширина полосы охвата: | ±50°, 2200 км |
Скорость передачи данных: | <1.5 Mbps |
Advanced Technology Microwave Sounder
ATMS представляет собой 22-канальный пассивный микроволновый радиометр для создания глобальных моделей распределения температуры и влажности, которые метеорологи могут ввести в свои прогнозы погоды.
Инструмент особенно эффективен в связке с предыдущим прибором, Cris. Это связано с тем, что облака в основном непрозрачны в инфракрасной части спектра, в то время как они в значительной степени прозрачны в микроволновом диапазоне. Получается синергия между Cris и ATMS, и их совместная работа может охватить гораздо более широкий спектр погодных условий, чем один ИК-радар.
Ozone Mapping Profiler Suite (OMPS)
OMPS — набор трех гиперспектральных инструментов для измерений озонового слоя.
Этот инструмент ежедневно измеряет глобальное распределение озона в атмосфере. Он также измеряет вертикальное распределение озона в слое атмосферы примерно от 15 км до 60 км, хотя и несколько реже. Один из приборов осуществляет измерения в надире, в то время как инструмент Limb направлен под углом к поверхности Земли. Третий аппарат системы управляет работой двух других, осуществляет коррекцию их положения, а затем захватывает и направляет данные с космических аппаратов.
Clouds and the Earth's Radiant Energy System (CERES)
CERES, трехканальный радиометр, измеряет солнечную радиацию и излучение Земли, а также противоизлучение атмосферы к поверхности. Он также определяет свойства облаков, в том числе размер, высоту, толщину, размер частиц и фазовое состояние с помощью одновременных измерений других инструментов. Эти измерения имеют решающее значение для понимания роли противоизлучения облаков в изменении климата и для повышения точности прогноза глобального потепления с использованием климатических моделей.