Местная система координат линейного объекта: различия между версиями
Строка 169: | Строка 169: | ||
== Заключение == | == Заключение == | ||
Рассмотренный способ построения проекции прост, поскольку позволяет заменить знание математической картографии обращением к утилите '''geod''' из библиотеки '''PROJ | Рассмотренный способ построения проекции прост, поскольку позволяет заменить знание математической картографии обращением к утилите '''geod''' из библиотеки '''PROJ''', которая используется как чёрный ящик. Этот подход не совсем корректен, поскольку геодезическая линия, соединяющая две точки на эллипсоиде, в косой проекции Меркатора отображается в кривую на апосфере, близкую к дуге большого круга, но не совпадающую с ней. К счастью, это несущественно даже для объектов длиной в сотни и тысячи километров. | ||
== Ссылки == | == Ссылки == |
Версия от 12:04, 3 мая 2020
по адресу http://gis-lab.info/qa/local-cs-linear-object.html
Конструирование проекции для представления системы координат линейного объекта в ГИС
Введение
Система координат линейного объекта строится для обеспечения строительства или эксплуатации протяжённого инженерного сооружения. Целью при этом является минимизация искажений, присущих проекции, в полосе объекта.
Постановка задачи
Пусть ось сооружения задана положением двух крайних точек в глобальной системе координат (ГСК).
В местной системе (МСК) совместим начало координат с точкой в середине отрезка геодезической линии, соединяющей крайние точки. Ось OX направим вдоль оси сооружения. Потребуем, чтобы расстояние между крайними точками равнялось априори заданной величине L.
Требуется подобрать проекцию, подходящую для представления такой МСК в ГИС и в программах, используемых геодезистами.
О проекции
Выбор проекции однозначен. Это косая проекция Меркатора с такими значениями параметров, чтобы так называемая начальная линия (линия наименьшего масштаба) проходила через конечные точки, а расстояние между этими точками равнялось L.
Для косой проекции Меркатора задаются следующие параметры:
- широта и долгота центра проекции φ₀, λ₀
- азимут начальной линии α
- масштаб на начальной линии k₀
- прямоугольные координаты в центре проекции x₀, y₀
- разворот координатных осей γ
Азимут начальной линии должен находиться в диапазоне −90° < α < +90°. Таким образом, если разворот γ равен нулю, ось OY будет направлена вдоль начальной линии в северную полуплоскость, OX в восточную.
Разворот γ обычно приравнивается значению α, чтобы компенсировать начальный разворот осей и вернуть оси OY направление строго на север. Возможность его явного задания позволяет произвольно управлять ориентацией осей МСК. Если задать нулевой разворот γ, ось OY будет направлена вдоль начальной линии в северную полуплоскость, OX перпендикулярно к начальной линии в восточную.
Определение параметров
Приведём данные тестового примера. Осевая линия задана координатами конечных точек на эллипсоиде WGS 84:
NN | φ | λ |
---|---|---|
1 | 52°00′03.358″N | 23°07′37.837″E |
2 | 52°00′46.722″N | 23°10′15.918″E |
Расстояние вдоль оси задано значением L = 3300.000 м.
Рассмотрим последовательность решения задачи с использованием PROJ. Вид строки параметров таков:
+proj=omerc +lat_0=φ₀ +lonc=λ₀ +alpha=α +k_0=k₀ +x_0=x₀ +y_0=y₀ +gamma=γ
Задачу помещения центра проекции в середину линии, соединяющей конечные точки, решим в два этапа. Сначала решим обратную геодезическую задачу, что даст азимут с первой точки на вторую α₁₂, азимут со второй точки на первую α₂₁ и длину отрезка геодезической линии между ними S. Затем решим прямую геодезическую задачу (ПГЗ), чтобы получить координаты средней точки и азимуты направлений с неё на конечные точки.
Решение обратной геодезической задачи
Решим ОГЗ с помощью утилиты geod из пакета PROJ.4:
$ geod -I -f "%.17g" -F "%.17g" +ellps=WGS84 +units=m <<EOF
> 52d00'03.358"N 023d07'37.837"E 52d00'46.722"N 023d10'15.918"E
> EOF
Программа выдаёт решение на эллипсоиде в виде строки значений α₁₂, α₂₁, S₁₂:
66.017759443956336 -113.94763462689073 3299.7360258541303
Решение прямой геодезической задачи
Цель — получить координаты и азимут середины отрезка геодезической линии. Прежде всего вычислим половину длины отрезка:
3299.7360258541303 / 2 = 1649.86801292706515
Для контроля решим ПГЗ дважды, от обоих концов линии. Используем ту же утилиту geod:
$ geod -f "%.17g" +ellps=WGS84 +units=m <<EOF
> 52d00'03.358"N 023d07'37.837"E 66.017759443956336 1649.86801292706515
> 52d00'46.722"N 023d10'15.918"E -113.94763462689073 1649.86801292706515
> EOF
Результатом будут две строки значений: φ₀, λ₀, α:
52.006957604612808 23.14912969166868 -113.96494062446807 52.006957604612793 23.149129691668666 66.035059375531944
Координаты центра проекции практически совпадают, азимуты обратных направлений отличаются на 180°.
Построение проекции
По результатам решения ПГЗ построим проекцию в первом приближении. Параметры lat_0 и lonc примем равными φ₀ и λ₀. Параметр alpha должен быть в диапазоне ±90°, примем для него значение α₀₂ = α₀₁ ± 180°. Чтобы направить ось OX вдоль направления 0–1, параметр разворота gamma примем равным 90°. Вот предварительный набор:
+lat_0=50.504316101 +lonc=20.989441172 +alpha=51.89831026 +k_0=1 +x_0=0 +y_0=0 +gamma=90
Выполним координаты конечных точек в проекции:
$ proj -r -f "%.17g" +proj=omerc +lat_0=52.0069576046128 +lonc=23.1491296916687 +alpha=66.0350593755319 +k_0=1 +x_0=0 +y_0=0 +gamma=90 +ellps=WGS84 +units=m <<EOF
> 52d00'03.358"N 023d07'37.837"E
> 52d00'46.722"N 023d10'15.918"E
> EOF
Программа выдаёт координаты первой и второй точек x₁, y₁ и x₂, y₂:
-1649.8680129311654 -1.0102527905258779e-13 1649.8680129226682 1.0631327490867519e-09
Вычислим масштаб k_0 как отношение заданной длины L к разности координат x₂ − x₁: k_0 = 3300 / (1649.8680129226682 + 1649.8680129311654) = 1.0000799985647634. Подставим это значение вместо единицы:
$ proj -r -f "%.17g" +proj=omerc +lat_0=52.0069576046128 +lonc=23.1491296916687 +alpha=66.0350593755319 +k_0=1.00007999856476 +x_0=0 +y_0=0 +gamma=90 +ellps=WGS84 +units=m <<EOF
> 52d00'03.358"N 023d07'37.837"E
> 52d00'46.722"N 023d10'15.918"E
> EOF
Вывод программы:
-1650.0000000040786 -1.0103336092990638e-13 1649.9999999969975 1.0632177981808281e-09
Точки практически лежат на оси OX, расстояние между ними 3300.000 м. Поставленная задача решена, проекция построена.
Вторая проекция
Нередко требуется вторая проекция, являющаяся зеркальным отражением первой: начало координат МСК-2 во второй точке, ось OX направлена вдоль оси в сторону, противоположную направлению на первую точку. Таким образом МСК-2 развёрнута по отношению к МСК-1 на 180° и смещена вдоль оси OX на длину L.
Вторая система строится на параметрах первой, только параметр gamma изменяем на 180°.
$ proj -f "%.4f" +proj=omerc +lat_0=50.504316101 +lonc=20.989441172 +alpha=51.89831026 +gamma=-90 +k_0=1.0000421804 +x_0=-90150 +y_0=0 +datum=WGS84 p12.dat
-180300.0000 -0.0000 0.0001 -0.0000
Тестирование
Создадим файл с координатами двух точек pt34.dat на эллипсоиде:
21 51 21 50
Вычислим координаты в МСК-1:
$ proj -f "%.4f" +proj=omerc +lat_0=50.504316101 +lonc=20.989441172 +alpha=51.89831026 +gamma=90 +k_0=1.0000421804 +x_0=-90150 +y_0=0 +datum=WGS84 p34.dat
-55539.0711 42936.4649 -124171.4321 -44612.8429
Вычислим координаты в МСК-2:
$ proj -f "%.4f" +proj=omerc +lat_0=50.504316101 +lonc=20.989441172 +alpha=51.89831026 +gamma=-90 +k_0=1.0000421804 +x_0=-90150 +y_0=0 +datum=WGS84 p34.dat
-124760.9289 -42936.4649 -56128.5679 44612.8429
Калькулятор подтверждает, что:
- суммы координат x соответствующих точек равны −L;
- суммы координат y соответствующих точек равны нулю.
Заключение
Рассмотренный способ построения проекции прост, поскольку позволяет заменить знание математической картографии обращением к утилите geod из библиотеки PROJ, которая используется как чёрный ящик. Этот подход не совсем корректен, поскольку геодезическая линия, соединяющая две точки на эллипсоиде, в косой проекции Меркатора отображается в кривую на апосфере, близкую к дуге большого круга, но не совпадающую с ней. К счастью, это несущественно даже для объектов длиной в сотни и тысячи километров.