Вычисление площади полигона на сфере и на эллипсоиде: различия между версиями
ErnieBoyd (обсуждение | вклад) |
ErnieBoyd (обсуждение | вклад) м (→Ссылки) |
||
Строка 58: | Строка 58: | ||
== Ссылки == | == Ссылки == | ||
* [http://gis-lab.info/qa/sphere-geodesic-invert-problem.html Задачи на сфере: обратная геодезическая задача] | * [http://gis-lab.info/qa/sphere-geodesic-invert-problem.html Задачи на сфере: обратная геодезическая задача] | ||
* [http://en.wikipedia.org/wiki/Earth_radius Earth radius] |
Версия от 06:00, 20 марта 2014
Одна-две фразы по существу.
Общие положения
Определим полигон как простой многоугольник — участок поверхности, ограниченный замкнутой полилинией без самопересечений.
Полилиния в свою очередь — ломаная, образованная отрезками геодезических линий.
Геодезическая линия на плоскости — это прямая; геодезическая линия на сфере — дуга большой окружности.
Полный поворот контура
В общем случае определение площади многоугольника на искривлённой поверхности — нетривиальная задача. Нужно интегрировать по поверхности с пределами, заданными неявно. К счастью, математика может предложить обходные пути решения задачи.
Представим себе точку, движущуюся вдоль контура полигона. Вершины являются точками поворота. Внутренний угол при вершине θ равен разности направлений α в предыдущую и следующую вершины, а поворот есть угол τ, смежный внутреннему:
На евклидовой плоскости, обойдя любой замкнутый контур без самопересечений, точка совершает поворот ровно на одну окружность — 360°, или 2π радиан. В случае многоугольника этот поворот складывается из суммы поворотов в вершинах.
На поверхности с ненулевой гауссовой кривизной общий поворот отличается от 2π на величину избытка или недостатка, пропорционального кривизне поверхности и площади фигуры.
Площадь полигона на сфере
Сферический избыток
В общем случае кривизна поверхности меняется в каждой точке, но не на сфере! Кривизна сферы постоянна, и площадь замкнутой фигуры однозначно соотносится с полным поворотом контура.
Отличие полного поворота от 2π радиан называется сферическим избытком ε, который пропорционален площади полигона S:
где R — радиус сферы.
Алгоритм вычисления площади
Пусть n-угольник задан координатами вершин φi, λi, где φi — широта i-ой вершины, λi — долгота, i = 1, … , n.
- Для каждой стороны из решения обратной геодезической задачи для её конечных вершин находим прямые и обратные азимуты αi, i+1 и αi+1, i.
- Для каждой вершины по азимутам αi, i−1 в предыдущую и αi, i+1 в последующую вершины находим поворот τi и добавляем его к полному повороту τ.
- Вычисляем сферический избыток ε.
- Вычисляем площадь полигона S.
Радиус сферы
Радиус сферы.