Вычисление площади полигона на сфере и на эллипсоиде: различия между версиями
ErnieBoyd (обсуждение | вклад) |
ErnieBoyd (обсуждение | вклад) |
||
| Строка 28: | Строка 28: | ||
=== Сферический избыток === | === Сферический избыток === | ||
В общем случае кривизна поверхности меняется в каждой точке, но не на сфере! Кривизна сферы постоянна, и площадь замкнутой фигуры легко определяется по полному повороту. | В общем случае кривизна поверхности меняется в каждой точке, но не на сфере! Кривизна сферы постоянна, и площадь замкнутой фигуры легко определяется по полному повороту контура. | ||
Отличие полного поворота от 2''π'' радиан называется сферическим избытком ''ε'', который пропорционален площади полигона ''S'': | Отличие полного поворота от 2''π'' радиан называется сферическим избытком ''ε'', который пропорционален площади полигона ''S'': | ||
Версия от 21:08, 19 марта 2014
Одна-две фразы по существу.
Общие положения
Определим полигон как простой многоугольник — участок поверхности, ограниченный замкнутой полилинией без самопересечений.
Полилиния в свою очередь — ломаная, образованная отрезками геодезических линий.
Геодезическая линия на плоскости — это прямая; геодезическая линия на сфере — дуга большой окружности.
В общем случае определение площади многоугольника на искривлённой поверхности — нетривиальная задача. Нужно интегрировать по поверхности с пределами, заданными неявно. К счастью, математика может предложить обходные пути решения задачи.
Представим себе точку, движущуюся вдоль контура полигона. Вершины являются точками поворота. Внутренний угол при вершине β равен разности направлений α в предыдущую и следующую вершины, а поворот есть угол θ, смежный внутреннему:
Невозможно разобрать выражение (SVG (MathML можно включить с помощью плагина для браузера): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \begin{array}{rcl} \beta_i & = & \alpha_{i, i-1} - \alpha_{i, i+1} \\ \theta_i & = & \pi - \beta_i \end{array}}
На евклидовой плоскости, обойдя любой замкнутый контур без самопересечений, точка совершает поворот на 2π радиан. В случае многоугольника этот полный поворот складывается из суммы поворотов в вершинах. На поверхности с ненулевой гауссовой кривизной общий поворот отличается от 2π на величину избытка или недостатка, пропорциональную кривизне поверхности и площади фигуры.
Площадь полигона на сфере
Сферический избыток
В общем случае кривизна поверхности меняется в каждой точке, но не на сфере! Кривизна сферы постоянна, и площадь замкнутой фигуры легко определяется по полному повороту контура.
Отличие полного поворота от 2π радиан называется сферическим избытком ε, который пропорционален площади полигона S:
Невозможно разобрать выражение (Ошибка преобразования. Сервер («https://wikimedia.org/api/rest_») сообщил: «Cannot get mml. Server problem.»): {\displaystyle {\begin{array}{rcl}\varepsilon &=&2\pi -\displaystyle \sum _{i=1}^{n}\theta _{i}\\S&=&\varepsilon R^{2}\end{array}}}
где R — радиус сферы.