Задачи на сфере: угловая засечка: различия между версиями
ErnieBoyd (обсуждение | вклад) м (→Алгоритм) |
ErnieBoyd (обсуждение | вклад) м (→Алгоритм) |
||
Строка 29: | Строка 29: | ||
Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления ''α''₁₃ и ''α''₂₃ уже заданы, остаётся определить расстояние ''σ''₁₃ или ''σ''₂₃. | Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления ''α''₁₃ и ''α''₂₃ уже заданы, остаётся определить расстояние ''σ''₁₃ или ''σ''₂₃. | ||
На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике | На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике ''Q''₁''Q''₂''Q''₃ нет ни одного известного элемента. Однако из решения обратной геодезической задачи для пунктов ''Q''₁, ''Q''₂ могут быть получены расстояние ''σ''₁₂, а также азимуты ''α''₁₂ и ''α''₂₁, после чего углы ''β''₁ и ''β''₂ вычисляются как разности азимутов при соответствующих пунктах. Далее из решения треугольника ''Q''₁''Q''₂''Q''₃ найдём сторону ''σ''₁₃. | ||
'''Последовательность | '''Последовательность действий:''' | ||
# решить обратную геодезическую задачу: по ''φ''₁, ''λ''₁, ''φ''₂, ''λ''₂ получить ''α''₁₂, ''α''₂₁, ''σ''₁₂; | |||
# вычислить углы ''β''₁, ''β''₂; | |||
# в треугольнике ''Q''₁''Q''₂''Q''₃ по ''σ''₁₂, ''β''₁, ''β''₂ вычислить ''σ''₁₃; | |||
# решить прямую геодезическую задачу: по ''φ''₁, ''λ''₁, ''α''₁₃, ''σ''₁₃ вычислить . | |||
== Пример программной реализации == | == Пример программной реализации == | ||
== Ссылки == | == Ссылки == |
Версия от 10:49, 12 марта 2014
Линейная засечка — это нахождение положения точки по координатам двух исходных пунктов и значениям азимутов направлений с этих пунктов на определяемую точку.
Общие положения
В качестве модели Земли принимается сфера с радиусом R, равным среднему радиусу земного эллипсоида. Аналогом прямой линии на плоскости является геодезическая линия на поверхности. На сфере геодезическая линия — дуга большого круга.
Введём следующие обозначения:
- φ — географическая широта,
- λ — географическая долгота,
- α — азимут дуги большого круга,
- σ — сферическое расстояние (длина дуги большого круга, выраженная в долях радиуса шара).
Линейное расстояние по дуге большого круга s связано со сферическим расстоянием σ формулой s = R σ.
Постановка задачи
- Исходные данные
- координаты пунктов Q₁, Q₂ — φ₁, λ₁, φ₂, λ₂,
- начальные направления с пунктов Q₁, Q₂ на точку Q₃ — α₁₃, α₂₃.
- Определяемые величины
- координаты точки Q₃ — φ₃, λ₃.
Алгоритм
Решение любого вида засечек сводится к нахождению полярных координат искомой точки, т.е. начального направления и расстояния на неё с одного из исходных пунктов. На конечном этапе координаты находятся из решения прямой геодезической задачи. Поскольку в угловой засечке направления α₁₃ и α₂₃ уже заданы, остаётся определить расстояние σ₁₃ или σ₂₃.
На рисунке синим цветом выделены заданные элементы сферического треугольника, красным цветом неизвестные, зелёным — вспомогательные элементы. Очевидно, в треугольнике Q₁Q₂Q₃ нет ни одного известного элемента. Однако из решения обратной геодезической задачи для пунктов Q₁, Q₂ могут быть получены расстояние σ₁₂, а также азимуты α₁₂ и α₂₁, после чего углы β₁ и β₂ вычисляются как разности азимутов при соответствующих пунктах. Далее из решения треугольника Q₁Q₂Q₃ найдём сторону σ₁₃.
Последовательность действий:
- решить обратную геодезическую задачу: по φ₁, λ₁, φ₂, λ₂ получить α₁₂, α₂₁, σ₁₂;
- вычислить углы β₁, β₂;
- в треугольнике Q₁Q₂Q₃ по σ₁₂, β₁, β₂ вычислить σ₁₃;
- решить прямую геодезическую задачу: по φ₁, λ₁, α₁₃, σ₁₃ вычислить .