Основные геоморфометрические параметры: теория: различия между версиями
Darsvid (обсуждение | вклад) Нет описания правки |
Darsvid (обсуждение | вклад) Нет описания правки |
||
Строка 15: | Строка 15: | ||
Согласно второму положению, основной аналитической операцией в ГИС, которая используется для расчета большинства параметров на основе растровых ЦМР является анализ окружения. Он позволяет количественно описать связь между точкой (пикселем) и его ближайшим окружением, применяя для расчета локальное (чаще всего, размером 3×3 пиксела) скользящее окно (рис. 1). | Согласно второму положению, основной аналитической операцией в ГИС, которая используется для расчета большинства параметров на основе растровых ЦМР является анализ окружения. Он позволяет количественно описать связь между точкой (пикселем) и его ближайшим окружением, применяя для расчета локальное (чаще всего, размером 3×3 пиксела) скользящее окно (рис. 1). | ||
<span style=background-color: | <center><span style="background-color:Yellow">рисунок 1</span></center> | ||
<span style="background-color: | <center><span style="background-color:Yellow">Рис. 1 Расчет большинства геоморфометрических параметров как правило производится на основе скользящего окна размером 3×3 пиксела (Geomorphometry…, 2008)<center><span style="background-color:Yellow"> | ||
Окно двигается через все поверхность растра (в направлении от верхнего левого до нижнего правого угла) и последовательно применяет в каждой позиции одну и ту же математическую операцию (расчетную формулу) для ячеек основного растра. Таким образом, результат расчетов определяется формулой, которая используется для сравнения значений центральной ячейки с соседними. В результате получается новый растр, аналогичный по пространственному охвату исходной ЦМР, но с другим параметром. | Окно двигается через все поверхность растра (в направлении от верхнего левого до нижнего правого угла) и последовательно применяет в каждой позиции одну и ту же математическую операцию (расчетную формулу) для ячеек основного растра. Таким образом, результат расчетов определяется формулой, которая используется для сравнения значений центральной ячейки с соседними. В результате получается новый растр, аналогичный по пространственному охвату исходной ЦМР, но с другим параметром. |
Версия от 16:12, 5 ноября 2013
Расчет (Zevenbergen-Thorne, 1987) и интерпретация уклона, экспозиции, кривизн рельефа земной поверхности
Геморфометрический анализ растровых ЦМР базируется на двух исходных положениях. Первое основывается на математической формализации земной поверхности, а второе предусматривает расчет показателя в точке (пикселе) с учетом окружения.
Согласно первому положению, с математической точки зрения ЦМР является статистической поверхностью, которая характеризует пространственное распределение показателя высоты и может быть представлена функцией вида:
(1) |
где – значение высоты в точке с географическими координатами , которое для лучшей аппроксимации рельефа может быть выражено более сложными функциями, например – полиномиальными (или многочленами). В таком случае многочлен 2-го порядка, используемый для аппроксимации земной поверхности, может иметь следующий вид:
(2) |
где и географические координаты точки, высоту которой необходимо определить, – коэффициенты уравнения аппроксимирующей поверхности 2-го порядка. Многочлены являются одними из наиболее простых и хорошо изученных функций в математике. Они характеризуются такими свойствами как непрерывность и сглаженность, благодаря чему их легко можно интегрировать и дифференцировать. Это открывает возможности использования математического анализа не только для более совершенного представления земной поверхности, но и для изучения ее свойств, например, на основе производных разных порядков.
Согласно второму положению, основной аналитической операцией в ГИС, которая используется для расчета большинства параметров на основе растровых ЦМР является анализ окружения. Он позволяет количественно описать связь между точкой (пикселем) и его ближайшим окружением, применяя для расчета локальное (чаще всего, размером 3×3 пиксела) скользящее окно (рис. 1).
Окно двигается через все поверхность растра (в направлении от верхнего левого до нижнего правого угла) и последовательно применяет в каждой позиции одну и ту же математическую операцию (расчетную формулу) для ячеек основного растра. Таким образом, результат расчетов определяется формулой, которая используется для сравнения значений центральной ячейки с соседними. В результате получается новый растр, аналогичный по пространственному охвату исходной ЦМР, но с другим параметром.
В данной статье мы будем рассматривать особенности расчета основных геморфометрических параметров на примере алгоритма Zevenbergen-Thorne (Zevenbergen, Thorne 1987), который характеризуется расчетной эффективностью и высокой достоверностью результатов (Skidmore 1989, Jones 1998, Zhou, Liu 2004, Rodríguez, Suarez 2010). Кроме того, он реализован как в Открытых (SAGA), так и проприетарных ГИС (кривизны в ArcGIS, расширение для ArcGIS DEM Surface Tools от Jenness Enterprises).
Алгоритм Zevenbergen-Thorne использует модификацию (2) следующего вида:
формула 3
где A...I – коэффициенты аппроксимации, рассчитанные с помощью полиномов Лагранжа на основе 9 значений z в ячейках окна 3×3. Геоморфометрические параметры получаются в результате дифференциациии (3) и решения соответствующих уравнений для центральной ячейки квадратной матрицы 3×3.