Конформное преобразование: различия между версиями

Материал из GIS-Lab
Перейти к навигации Перейти к поиску
Строка 41: Строка 41:


<math>
<math>
\Delta x_i = x_i - x_0 \quad
\Delta x_i = x_i - \bar{x} \quad
\Delta y_i = y_i - y_0 \quad
\Delta y_i = y_i - \bar{y} \quad
\Delta X_i = X_i - X_0 \quad
\Delta X_i = X_i - \bar{X} \quad
\Delta Y_i = Y_i - Y_0
\Delta Y_i = Y_i - \bar{Y}
</math>
</math>

Версия от 08:17, 9 марта 2013


Конформное преобразование на плоскости широко используется в геодезии при создании местных координатных систем на небольшие территории, ограниченные, как правило, размерами населённого пункта.

Введение

Следующие формулы связывают координаты точек x, y, заданные в местной системе координат (МСК), и координаты X, Y, заданные в государственной системе координат (ГСК):

где a₀, b₀ — положение начала МСК в ГСК, m — масштабный множитель, θ — угол разворота.

Используемый в геодезии набор параметров называется «ключ». Он определяется следующими величинами: X₀, Y₀, x₀, y₀, m, θ. Первые четыре — обычно координаты одного из геодезических пунктов в двух системах.

Исходный материал для определения параметров — пары координат пунктов геодезической сети, полученные из независимого уравнивания одних и тех же измерений в МСК и в ГСК. В зависимости от класса пунктам (вернее, парам уравнений) назначаются веса p.

Алгоритм нахождения параметров

Для определения четырёх параметров принимается следующая математическая модель:

Очевидно, конформное преобразование является частным случаем аффинного.

1. Вычисление взвешенных средних

2. Вычисление разностей координат